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Abstract: The presentation claims that architectural design plays a crucial role in 
system development as a first step in a process that turns a requirements 
specification into a working software and hardware system. As such, architectural 
design should follow a rigorous methodology – a science – rather than intuition – an 
art. Our basic premise is that requirements in information systems follow a service 
philosophy, where services are characterized by their functionality and quality-of-
service parameters. We develop a design hypothesis that takes the service 
characteristics into account in a stepwise fashion. We then validate the hypothesis 
for traditional database characteristics, demonstrate for novel requirements how 
these would affect architectures, and finally apply it to the current 4-tier server 
architectures. 

 
 
1 Motivation 
 
Information systems grow in the diversity of their application domains, number of 
users, and geographic distribution, but so does their complexity in terms of the number 
and functionality of components and the number of connections between these. An 
almost bewildering multitude of architectural patterns has appeared over the more 
recent past, that try to bring order into the evolving chaos. To name just a few of the 
buzzwords, take layered architectures, n-tier architectures, component architectures, 
middleware, vertical architectures, horizontal architectures, enterprise this-and-that. 
Nonetheless, it seems that these architectures have enough in common so that one 
suspects that they just look at similar phenomena from different perspectives, 
emphasize different aspects, or explore issues to different depths. 
 
The premise of this paper is that architectural design plays a crucial role in system 
development. Unfortunately though, architectural system design does not seem to have 
too many friends. Typical excuses are that “top-down designs never work anyway 
because they ignore the technical possibilities and opportunities”, that “even the 
cleanest architecture deteriorates over time due to the many additions and 
modifications on short notice”, or that “architectures emphasize order over 
performance”. We suspect that the real reason is the lack of a comprehensive, 
systematic and unifying approach to architectural design that makes the patterns in 
some sense comparable. 
 
We claim that architectural design is the first step in a process that turns a 
requirements specification into a working software and hardware system and, hence, 



could be seen as “programming-in-the-very-large”. Since it is an accepted doctrine that 
mistakes when caught in the early stages are much cheaper to correct than when 
discovered in the late stages, good architectural system design could be of enormous 
economical potential. 
  
The purpose of this paper is to take a first step in the direction of a methodology for 
architectural design. Or in other words, we submit that architectural design should 
follow a methodology and not intuition, i.e., should be treated as a science and not as an 
art. In order not to become overly ambitious, and to stay within the confines of a 
conference paper, we will limit ourselves to information systems as the synthesis of 
data base and data communication systems, with more emphasis on the former. 
 
 
2 Services 
 
2.1 Services and resources 
 
Since we claim that architectural design is the first step in a process that turns a 
requirements specification into a working software and hardware system, an essential 
ingredient of the design method is a uniform and rigorous requirements specification. 
Requirements is something imposed by an outside world. For  information systems the 
outside world are the business processes in some real-world organization such as 
industry, government, education, financial institutions, for which they provide the 
informational support. Figure 1 illustrates the basic idea. 
 
The counterpart of business processes in an information system are informational 
processes. Business processes proceed in a linear (as in Figure 1) or non-linear order 
of steps, and so do the informational processes. To meet its obligations, each step 
draws on a number of resources. Resources are infrastructural means that are not tied 
to any particular process or business but support a broad spectrum of these and can be 
shared, perhaps concurrently, by a large number of processes. In an information system 
the resources are informational in nature. Because of their central role, resources must 
be managed properly to achieve the desired system goals of economy, scale, capacity 
and timeliness. Therefore, access to each resource is through a resource manager. In 
the remainder we use the term information systems in the narrower sense of a 
collection of informational resources and their managers. 
 
What qualifies as a resource depends on the scope of a process. For example, in 
decision processes the resources may be computational such as statistical packages, 
data warehouses or data mining algorithms. These may in turn draw on more generic 
resources such as database systems and data communication systems. 
 
 



 

What is of interest from an outside perspective is the kind of support a resource may 
provide. Abstractly speaking, a resource may be characterized by its competence . 
Competence manifests itself as the range of tasks that the resource manager is capable 
of performing. The range of tasks is referred to as a service. In this view, a resource 
manager is referred to as a service provider (or server for short) and each subsystem 
that makes use of a resource manager as a service client (or client for short). 
 
 
2.2 Service characteristics 
 
The relationship between a client and a server is governed by a service level agreement. 
In this agreement the server gives certain guarantees concerning the characteristics of 
the services it provides. From the viewpoint of the client the server has to meet certain 
obligations or responsibilities. 
 
The responsibilities can be broadly classified into two categories. The first category is 
service functionality and covers the collection of functions available to a client and 
given by their syntactical interfaces (signatures) and their semantic effects.  The 
semantic effects often reflect the interrelationships between the functions due to a 
shared state.  Functionality is what a client basically is interested in. 
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The second category covers the qualities of service . These are non-functional 
properties that are nonetheless considered essential for the usefulness of a server to a 
client. 
 
 
2.3 Service qualities 
 
To make the discussion more targeted, we study what technical qual ities of service we 
come to expect from an information system. 
 
Ubiquity. In general, an information system includes a large – in the Internet even 
unbounded - number of service providers. Access to services should be unrestricted in 
time and space, that is, anytime between any places. Ubiquity of information services 
makes data communication an indispensable part of information systems. 
 
Durability. Information services have not only to do with deriving new information 
from older information but also act as a kind of business memory. Access to older 
information in the form of stored data must remain possible at any time into an 
unlimited future, unless and until the data is explicitly overwritten. Durability of 
information makes database management a second indispensable ingredient of 
information systems. 
 
Interpretability. In an information system, data is exchanged across both, space due to 
ubiquity and time due to durability. Data carries information, but it is not information 
by itself. To exchange information, the sender has to encode its information as data, and 
the receiver reconstructs the information by interpreting the data. Any exchange should 
ensure, to the extent possible, that the interpretations of sender and receiver agree, that 
is, that meaning is preserved in space and time. This requires some common 
conventions, e.g., a formal framework for interpretation. Because information systems 
and their environment usually are only loosely coupled, the formal framework can only 
reflect something like a best effort. Best-effort interpretability is often called 
(semantic) consistency. 
 
Robustness. The service must remain reliable, i.e., guarantee its functionality and 
qualities to any client, under all circumstances, be they errors, disruptions, failures, 
incursions, interferences. Robustness must always be founded on a failure model. 
There may be different models for different causes. For example, a service function 
must reach a defined state in case of failure (failure resilience), service functions mus t 
only interact in predefined ways if they access the same resource (conflict resilience), 
and the effect of a function must not be lost once the function came to a successful end 
(function persistency). 
 
Security. Services must remain trustworthy, that is, show no effects beyond the  
guaranteed functionality and qualities, and include only the predetermined clients, in 
the face of failures, errors or malicious attacks. 
 



Performance. Services must be rendered with adequate technical performance at given 
cost. From a client’s perspective the performance manifests itself as the response time. 
From a whole community of clients the performance is measured as throughput. 
 
Scalability. Modern information systems are open systems in the number of both, 
clients and servers. Services must not deteriorate in functionality and qualities in the 
face of a continuous growth of service requests from clients or other servers. 
 
 
3 Service hierarchies 
 
3.1 Divide-and-conquer 
 
Given a requirements specification in terms of service functionality and qualities on 
the one hand and a set of available basic, e.g., physical resources from which to 
construct them on the other hand, architectural design is about solving the complex task 
of bridging the gap between the two. The time-proven method for doing so is divide-and 
conquer which recursively derives from a given task a set of more limited tasks that can 
be combined to realize the original task. However, this is little more than an abstract 
principle that still leaves open the strategy that governs the decomposition. 
 

 
We look for a strategy that is well-suited to our service philosophy. Among the various 
strategies covered in [St02] the one to fit the service philosophy best is the assignment 
of responsibilities. In decomposing a larger task new smaller tasks are defined, that 
circumscribe narrower responsibilities within the original responsibility (Figure 2). If 
we follow Section 2.2, a responsibility no matter what its range is always defined in 
terms of a service functionality and a set of service qualities. Hence, the 
decomposition results in a hierarchy of responsibilities, i.e., services, starting from the 

Figure 2 Divide-and-conquer for services
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semantically richest though least detailed service at the root and progressing 
downwards to ever narrower but more detailed services. The inner nodes of the 
hierarchy can be interpreted as resource managers that act as both, service providers 
and service clients. 
 
 
3.2 Design hypothesis 
 
All we know at this point is that decomposition follows a strategy of dividing 
responsibilities for services. Services encompass functionality and a large number of 
quality-of-service (QoS) parameters. This opens up a large design space at each step. A 
design method deserves its name only if we impose a certain discipline that restricts 
the design space at each step. 
 
The challenge now is to find a discipline that both, explains common existing 
architectural patterns, and systematically constructs new patterns if novel requirements 
arise. We claim that the service perspective has remained largely unexplored so that 
any discipline based on it is as yet little more than a design hypothesis. 
 
Our method divides each step from one level to the next into three parts. 
 
Functional decomposition. 
This is the traditional approach. We consider service functionality as a primary 
criterion for decomposition. Since the original service requirements reflect the needs 
of the business world, the natural inclination is to use a pure top-down or stepwise 
decomposition strategy. At each design step a service functionality is given, and we 
must decide whether, and if so how, the functionality should be further broken up into a 
set of less powerful obligations and corresponding service functionalities to which 
some tasks can be delegated, and how these are to be combined to obtain the original 
functionality. However, the closer we come to the basic resources the more these will 
restrict our freedom of design. Consequently, at some point we may have to reverse the 
direction and use stepwise composition to construct a more powerful functionality 
from simpler functionalities. 
 
Propagation of service qualities. 
Consider two successive levels in the hierarchy and an assignment of QoS-parameters 
to the higher-level service, we now determine which service qualities should be taken 
care of by the services on the upper and lower levels. Three options exist for each 
quality. Under exclusive control the higher-level service takes sole responsibility, i.e., 
does not propagate the quality any further. Under partial  control it shares the 
responsibility with some lower-level service, i.e., passes some QoS aspects along. 
Under complete delegation  the higher-level service ignores the quality altogether and 
entirely passes it further down to a lower-level service. For partial control or complete 
delegation our hope is that the various qualities passed down are orthogonal and hence 
can be assigned to separate and largely independent resource managers. 
 
 



Priority of service qualities. 
Among the service qualities under exclusive or partial control, choose one as the 
primary quality and refine the decomposition. Our hope is that the remaining qualities 
exert no or only minor influences on this level, i.e., are orthogonal to the primary 
quality and thus can be taken care of separately. 
 
Clearly, there are interdependencies between the three parts so that we should expect to 
iterate through them. 
 
  
4 Testing the design hypothesis 
 
4.1 Classical 5-layer architecture 
 
Even though it is difficult to discern from the complex architecture of today’s 
relational DBMS, most of them started out with an architecture that took as its 
reference the well-published 5-layer architecture of System R [As79, Ch81]. Up to 
these days the architecture is still the backbone of academic courses in database system 
implementation (see, e.g., [HR99]). As a first test we examine whether our design 
hypothesis could retroactively explain this (centralized) architecture. 
 
4.1.1 Priority on performance 
 
We assume that the DBMS offers all the service qualities of Section 2.3 safe ubiquity, 
and we ignore security for the time being. The service functionality is determined by 
the relational data model in its SQL appearance. 
 
As noted in Section 2.3, durability is the raison d’être for DBMS. Durability is first of 
all a quality that must be guaranteed on the level of physical resources, by non-volatile 
storage. Let’s assume that durability is delegated all the way down to this level. Even 
after decades durability is still served almost exclusively by magnetic disk storage. If 
we use processor speed as the yardstick, the overwhelming bottleneck, by six orders of 
magnitude, is access latency, which is composed of the movement of the mechanical 
access mechanism for reaching a cylinder and the rotational delay until the desired data 
block appears under the read/write head. Consequently, performance dwarfs all other 
service qualities in importance on the lowest level. Considering the size of the 
bottleneck and the fact that performance is also an issue for the clients, it seems to 
make sense to work from the hypothesis that performance is the highest-priority 
quality across the entire hierarchy to be constructed. 
 
4.1.2 Playing off functionality versus performance 
 
Since we ignore for the time being all service qualities except performance, our design 
hypothesis becomes somewhat simplified: There is a single top-priority quality, and 
because it pervades the entire hierarchy it is implemented by partial control. The 
challenge, then, is to find for each level a suitable benchmark against which to evaluate 



performance. Such a benchmark is given by an access profile, that is a sequence of 
operations that reflects, e.g., average behavior or high-priority requests. We refer to 
such a benchmark as data staging . 

 
Consequently, our main objective on each level is determining a balance of 
functionality and data staging. As Figure 3 illustrates, the balancing takes account of a 
tandem of knowledge. On the way down we move from more to less expressive data 
models and at the same time from a wider context, i.e., more global knowledge of 
prospective data usage, to a narrower context with more localized knowledge of data 
usage. The higher we are in the hierarchy, the earlier can we predict the need for a data 
element. Design for performance, then, means to put the predictions to good use. 
Based on these abstractions we are indeed able to explain the classical architecture. 
 
• We start with the root whose functionality is given by the relational model and 

SQL. The logical database structure in the form of relations is imposed by the 
clients. We also assume an access profile in terms of a history of operations on the 
logical database. We compress the access profile into an access density that 
expresses the probability of joint use of data elements within a given time interval. 
The topmost resource manager can now use the access density to rearrange the data 
elements into sets of jointly accessible elements. It then takes account of 
performance by translating queries against the relational database to those against 
the rearranged, internal database. The data model on this internal level could very 
well still be relational. But since we have to move to a less expressive data model, 
we leave only the structure relational but employ tuple operators rather than set 
operators. Consequently, the topmost resource manager also implements the 
relational operators by programs on sets of tuples. 

• What is missing from the access density is the dynamics – which operations are 
applied to which data elements and in which order. Therefore, for the next lower 
level we compress the access profile into an access pattern that reflects the 
frequency and temporal distribution of the operations on data elements. There is a 
large number of so-called physical data structures tailored to different patterns – 

Figure 3 Balancing functionality and performance on a level
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take hash algorithms for associative access, list structures for sequential access, 
trees for combined associative and sequential access. The resource manager on this 
level accounts for performance by assigning suitable physical structures to the sets 
of the internal data model. The data model on the next lower level provides a library 
of physical data structures together with the operators for accessing them.  

• It is not all clear how to continue from here on downwards because we have 
extracted all we could from the access profile. Hence we elect to change direction 
and start from the bottom. Given the storage devices we use physical file 
management as provided by operating systems. We choose a block-oriented file 
organization because it makes the least assumptions about subsequent use of the 
data and offers a homogeneous view on all devices. We use parameter settings to 
influence performance. The parameters concern, among others, file size and 
dynamic growth, block size, block placement, block addressing (virtual or 
physical). To lay the foundation for data staging we would like to control physical 
proximity: adjacent block numbering should be equivalent to minimal latency on 
sequential, or (in case of RAID) parallel access. The data model is defined by 
classical file management functions. 

• The next upper level recognizes the fact that on the higher levels data staging is in 
terms of sets of records. It introduces its own version of sets, namely segments. 
These are defined on pages with a size equal to block size. Performance is 
controlled by the strategy that places pages in blocks. Particularly critical to 
performance is the assumption that record size is much lower than page size so that 
a page contains a fairly large number of records. Hence, under the best of 
circumstances a page transfer into main memory results in the transfer of a large 
number of jointly used records. Buffer management gives shared records a much 
better chance to survive in main memory. The data model on this level is terms of 
sets of pages and operators on these. 

• This leaves just the gap to be closed between sets of records as they manifest 
themselves in the physical data structures, and sets of pages. Given a page, all 
records on the page can be accessed with main memory speed. Since each data 
structure reflects a particular pattern of record operations, we translate the pattern 
into a strategy for placing jointly used records on the same page (record 
clustering). The physical data resource manager places or retrieves records on or 
from pages, respectively. 

 
Figure 4 summarizes the discussion. 
 
4.1.3 Taking consistency into consideration 
 
Data models represent generic functionalities, that is they are described by 
polymorphic type systems. Consequently, the managers in the service hierarchy of 
Section 4.1.2 deal with databases and queries generically. On the other hand, databases 
and queries against them must be monomorphic to be able to process them. Data 
models are instantiated to monomorphic type systems by specifying database schemas 
that are derived from the application semantics. Hence, consistency manifests itself in 
database schemas. 
 



We conclude from the design process in Section 4.1.2 that only the upper two 
managers for logical and internal databases need a rich type system. Hence, consistency 
is the responsibility of just the upper two managers. Access density and patterns must 
be expressed in terms of the database schema to make sense. 
 
Both managers use the schema to interpret the queries and to control the performance. 
Both access the schema but have no need to manage by themselves the functions for 
accepting, checking, storing and retrieving the schema. Nor does any of the lower 
managers appear to be a candidate to which to delegate this functionality. Consequently, 
we add a new service, meta data management, that is used by the two managers. As a 
service shared by two levels it seems to fall outside the hierarchy of Figure 4 (Figure 
5). With the new service we may again associate service qualities such as (meta-
)consistency or durability so that the design process should be repeated for the new 
branch. 

Figure 4 Reference service hierarchy for set/record-oriented database management systems
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4.1.4 Adding robustness 
 
Consistency in terms of the database schema guarantees that the database reflects a 
possible state of the environment. Transactions can ensure that the database 
corresponds to the current state. Consequently, robustness with failure resilience, 
conflict resilience and function persistency is defined in terms of transactions as 
atomic processing units. With the exception of Weikum’s multi-level transactions 
[We88] all reference architectures deal with transactional qualities (at least if they are 
ACID) on levels that are devoid of application semantics. In the design of Section 4.1.2 
the proper level for transaction management would then be the segment level. 
 
The segment level must now take care of two service qualities, performance and 
robustness. According to our design hypothesis we have to decide if the two are 
orthogonal. Intuitively one indeed considers them orthogonal because one would like to 
have performance even if there was no robustness, and robustness even if performance 
was not an issue. As a result one would split the segment level into two resource 

Figure 5 Augmented reference service hierarchy of Figure 4
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managers, segment management proper and transaction management. Figure 5 shows 
the extension of the architecture. In fact, the two qualities are not entirely independent 
of one another so that the two managers should closely communicate with one another. 
   
4.1.5 Adding durability 
 
Peripheral storage may itself be subject to technical failures or external catastrophic 
events. Consequently, there is more to durability than what we considered in Section 
4.1.2. The arguments in Section 4.1.4 can be repeated here: Durability is a generic 
property that ought to apply irrespective of application semantics, and it is orthogonal 
to performance and robustness (to the latter because of its much longer time horizon). 
Consequently, we add another resource manager, archive management, on the segment 
level (Figure 5). 
 
 
4.2 Semistructured databases 
 
Our design hypothesis held up quite well to explain the classical 5-layer architecture 
both in its core and its extensions. A somewhat harder test would be to try and apply the 
hypothesis to an area where there is less agreement as to the best reference 
architecture: semistructured databases or more specifically, XML databases. 
 
4.2.1 Front-ends 
 
For the sake of comparison with Section 4.1, let us assume that there is still 
consistency to be observed, that is, there is a database schema (either DTD or XML 
Schema). Under these circumstances we currently find two approaches. One imposes 
external factors, either technical such as interoperability between DBMS on the basis 
of XML as the data exchange format, or economical such as minimal cost of re-
implementation. The result is some kind of XML front-end to a relational DBMS. The 
second approach builds a tailored, so-called native DBMS for XML. 
 
In terms of our design hypothesis, one could explain the front -end as singling out the 
external factors as additional qualities of service that are kept under exclusive control. 
The XML data model significantly differs from the relational data model, though. The 
data structures are hierarchies rather than flat tuple sets, access is navigational by path 
expressions rather than set-algebraic, the nodes in the tree may have structural 
differences even if they satisfy the same type, and because of the document history 
nodes may include long texts or other media data. Consequently, the backside of the 
approach is that the front-end, if it deals with performance at all, does so on criteria 
that differ from the rest of the system. 
 
4.2.2 Native systems 
 
There is no reason to believe that performance plays a lesser role for (pure) XML 
databases. Therefore the design process of Section 4.1.2 based on seamless 



performance should apply here as well, though we should expect that the differences in 
the data model have a significant effect. 
 
• The root functionality is now given by XML, with the logical database structure in 

the form of trees and reading access by path expressions that identify subtrees. For 
writing access there is as yet no common standard. Some vendors prefer simple 
delete/write for modifications, or experiment with XSLT. Consequently, there is 
no clear way to separate access density and patterns – both take the form of 
navigated trees. Density is complicated by the fact that nodes have large structural 
variances as to number of attributes, cardinality of same-tagged successors and size 
of attached media data, and patterns allow various selection choices due to the 
structural variances. Indeed, native XML database products seem to collapse the 
two upper resource managers of the relational system into a single, fairly complex 
manager. 

• The next lower resource manager is now something akin to the physical data 
structures. Basically one would expect three kinds of data structures: Subtrees of 
XML structures, index structures for navigating through XML structures, and 
media data of possibly large size. 

• Each of these physical structures can then be optimized with regard to 
performance. Index structures come closest to the relational situation and may thus 
be realized on the segment level similar to Section 4.1.2. Subtrees may vary widely 
in size so that either large pages sizes must be chosen or subtrees may span a 
number of pages. Both require solutions that differ somewhat from that typical for 
relations, so that segment management becomes definitely more complicated. 
Media data would extend across many pages, moreover classical buffer caching 
would make little sense for them. They would, therefore, directly draw on the 
services of file management. 

 
Figure 6 summarizes the discussion. Viewed superficially the architecture looks 
simpler than for the relational case. In fact, though, it is just less structured because it 
seems more difficult to decompose the services. In the end each resource manager in 
the architecture is more complicated than in the relational case. We note in passing that 
the problem of media data is also known as well for relational systems where large 
binary fields are used for the purpose. 
 
 
5 Putting the design hypothesis to work 
 
Section 4 seems to bear out the validity of our design hypothesis. But does it really? Or 
– so one might suspect – did we just formulate the hypothesis to fit the well-
established architectures? Better proof would be to find constructive solutions to some 
novel situations. 



 
 
5.1 Hippocratic databases 
 
In a recent paper [Ag02] Rakesh Agrawal et al. introduce the concept of Hippocratic 
databases  for database systems that should enforce all political and societal rules to 
protect the privacy of data. The authors translate the requirement into the service 
quality of purpose: Any acquisition of data, their durability over a time span, and any 
queries on them have to serve a specific purpose. A purpose should be formulated in a 
precise fashion, all persons affected should agree, and there should be no access to the 
data without the purpose. The authors then go on to propose an architecture. The first 
impression is that the authors pretty much stick to the servi ce hierarchy of Section 4.1 
and just augment it by additional, albeit complex components. In other words, the 
authors do not question the prevalence of performance. 
 
What would have happened if they had done so? If they had made purpose their prime 
quality? Let’s try for a hypothetical answer (Figure 7). Suppose that we query the 
database in the usual way, except that the query is accompanied by its purpose. We 
expect that the result is those data whose purpose is compatible with the purpose of the 

Figure 6 Service hierarchy for semistructured database systems
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query. All other data remain invisible to the client, i.e., become visible neither by 
accident nor by intent. 
 

 
Notice that the purposes of the database are not open to inspection by regular clients. 
Consequently, they can only be seen from the second level on downwards. The 
uppermost level will confine itself to standard query processing into, e.g., a query graph 
together with information on the query purpose. This is input to the second level 
together with the rules, e.g., authorization rules, on database purposes. This allows to 
compute the visible nodes in the query graph. The third level sets up the physical data 

Figure 7 Hypothetical service hierarchy for Hippocratic databases
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structures for the visible data and computes their materializations. In other words, this 
level will separate the visible data from the invisible ones and reproduce the former in a 
separate main storage area. The next lower level is the most critical one because it must 
do the physical separation, for instance in a well-protected buffer area, and thus is 
something akin to an internal firewall. Only below can we proceed with the traditional 
storage engine from the level of segment management on downwards. And only from 
there on replaces performance purpose as the prime quality. 
 
There is an apparent conclusion: Privacy protection in DBMS comes at the price of 
lower performance. 
 
 
5.2 Incorruptible databases 
 
While Hippocratic databases restrain access according to purpose no matter what the 
intent, incorruptible databases restrain changes no matter what the purpose. More 
precisely, the goal of incorruptible databases is to allow only those updates that satisfy 
certain rules, i.e., that make sense or seem plausible. Incorruptibility can be seen as a 
special kind of consistency. Consistency thus becomes the prevailing quality of 
service. 
 
Plausibility can be tested in various ways. For example, one may employ statistical and 
data mining techniques to detect outliers, or one may formulate somehow restricted 
first-order logic formulae to check new input in the light of absolute constraints, the 
current database state or the previous history of database states. The second approach 
has a lot of similarity to deductive databases. We try to follow this approach. 
 
Deductive constraint checking is known to be compute-bound rather than I/O-bound. 
Clearly then, performance is again the quality of priority. But in contrast to Section 4 
where it was due to durability it is now due to consistency. Moreover, whereas in 
Section 4 we assume queries to be spontaneous or any of a large number of 
parameterized queries, consistency constraints are stable over a long period of time so 
that preprocessing makes sense. Further, a large number of constraints must be 
observed at any one time so that optimization techniques can employ additional 
techniques such as common subexpressions [He96]. Consequently, the service 
hierarchy splits at the top into a preprocessing (“compile”) service and a query-and-
update (“just-in-time”) service. The later does the just-in-time rule processing 
employing the results of the precompiled checking modules. Deductive databases 
usually employ relational databases that have been augmented by special algebraic 
operators. Both precompilation and just-in-time optimization should generate queries 
that fetch into a special main memory cache those database portions to be checked, but 
that are formulated in such a way as to delegate the optimization with respect to data 
staging to traditional levels of a DBMS. Figure 8 summarizes the hypothetical solution. 



 
 
6 Tight and loose coupling 
 
6.1 Layered and component architectures 
 
The reader may have noticed that what we have constructed so far were service 
hierarchies. These are not yet architectures but just the preliminary steps towards an 
architecture. 

Figure 8 Hypothetical service hierarchy for incorruptible databases
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System architectures fall into two broad categories, layered architectures and 
component architectures. Two successive levels in a service hierarchy form 
successive layers if there is a close coupling between the two. If the coupling is loose, 
the levels form separate components. 
 
Intuitively speaking, close coupling reflects a higher degree of interdependence, loose 
coupling a lesser degree. In view of the broad meaning of interdependence it will be 
difficult to find a single factor that determines the strength of coupling, and therefore 
to give a precise formulation. Instead we take a phenomenological approach. 
 
• One conceivable criterion for loose coupling is that the two services either share 

no resources, or do so free of conflicts. An example is services that run on 
different computers or in different processes. 

• One may consider as a case of loose coupling if two levels are separated by 
exclusive control or by complete delegation, that is, if they attend to different 
service qualities. Hence, the two share no responsibilities, and they can be 
expected to pursue independent strategies and thus to achieve a fair degree of 
autonomy.  

• Even in case of partial control there may be a case for loose coupling if satisfying 
the quality is achieved by moving in different directions, indicating that different 
conditions come into play. Just remember the reversal of direction during the 
design of the classical 5-layer architecture in Section 4.1.2 due to the 
disappearance of application semantics. 

• From software engineering it is well-known that the traffic density between two 
resource managers, e.g., the number of service calls or messages per time unit, 
determines the needed strength of the coupling. Higher densities require close 
coupling to avoid a decline in performance. 

• Finally, a service may be of general value to different service hierarchies and thus 
be called from various clients. In this case close coupling would give an unfair 
advantage to just one client. 

 
These criteria may occur in combination, and are not even completely orthogonal. 
Consequently, in a given situation there may still be a choice of whether to translate a 
hierarchy into a layered or a component architecture. 
 
 
6.2 Service hierarchies revisited 
 
One can easily demonstrate that with the four criteria above there is more than one 
architectural solution for the hierarchy of Section 4.1 (Figure 5). Fairly straightforward 
is the case for metadata and archive management. Both have their own resources, the 
top two levels of the hierarchy usually call on metadata only during certain start-up 
phases, and archive management kicks in only at larger intervals. Hence, both are 
natural components. 
 



The boundary between physical data structures reflects a reversal of direction. 
Therefore one may opt for two components comprising the levels above and below, 
respectively. On the other hand, the two levels share the buffers located in the segment 
level. As a consequence, there is also a high traffic density between the two by placing 
and accessing records. Further traffic arises from resolving conflicts between the two. 
And indeed, during the long history of database systems both, complete layering and 
separation into two components, can be found, although the latter has mostly been 
confined to prototypes. 
 
Similar considerations hold for transaction management. Transaction management has 
(almost) exclusive control over robustness, suggesting a component solution. However, 
usually transaction management carries some responsibility for performance, indicated 
by sharing the buffer with segment management. Traditionally, the performance 
argument won the day, and transaction management migrated into segment management. 
An exception is the QoS of conflict resilience which has lately even shown a tendency 
to move outside the DBMS. 
 
Figure 9 illustrates the extreme of full componentization. 
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Figure 9 Component architecture for the service hierarchy of Figure 5



One may apply a similar design strategy to the other service hierarchies. For example, 
for the hierarchy of Section 4.2 (Figure 6) there is a somewhat stronger though still not 
overwhelming argument for providing separate storage engines. In Figure 7 the firewall 
mandates  loose coupling, with a separate storage engine and perhaps part of the secure 
buffers level placed in a separate component. In Figure 8 the compile services qualify 
as a component, and the boundary between relational services and relational data model 
has many traits of loose coupling.  
 
We conclude that from a programming-in-the-very-large standpoint, if given a service 
hierarchy, components determine a coarse-granular system architecture and layers the 
fine-granular architecture within a component. 
 

 
 
 
 
 
 

Figure 10 Four-tier architecture in a multidimensional framework
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7 Coarse-granular component architectures 
 
7.1 Tiered and multi-dimensional architectures 
 
Information systems are more than just database systems. Indeed today, database 
systems are almost entirely hidden behind middleware and application servers. On the 
other hand, modern information systems are still service providers so that our design 
approach should carry over to these much coarser architectures. 
 
As just mentioned, coarse architectures should be component architectures. The 
services may still be part of a service hierarchy. If this is the case we speak of a tiered 
architecture. A modern example is the 4-tier architecture with presentation clients, 
presentation servers, application servers and data managers (Figure 10). 
 
The 4-tier architecture needs an infrastructure for communication and interoperability, 
commonly referred to as middleware. Figure 10 illustrates how the middleware as a 
component is called from each level in the service hierarchy so that it seems to pervade 
the entire hierarchy. One may visualize such an arrangement as the hierarchy forming 
one dimension and the common component (which in all likelihood is itself a service 
hierarchy) defining a second dimension. We refer to such an arrangement as a multi-
dimensional architecture. 
 
To illustrate the principle, consider as a very simple example Figure 11 [Ab03]. It 
shows a database server together with some application client. Both communicate 
across a transmission network with its own layered architecture (in our case the bottom 
four OSI/ISO levels). Space defines the third dimension. 
 
 
7.2 Design hypothesis revisited 
 
Take the architecture of Figure 10. Three of the four component types exhibit a 
relatively narrow and standardized functionality: client, Web server and database server. 
The specifics of an application – the business logic in the form of service functionality 
and QoS parameters – are concentrated in just one component, the application server. 
 
Compared to Sections 4 through 6 the situation is now different: The component 
architecture is not of our own design but is being imposed – for good software 
engineering reasons. All we can hope for is that each component does its best to meet 
its QoS parameters. But as we all know, a set of local optima does not necessarily 
result in the global optimum. To approach the latter, we modify our design hypothesis 
as follows. 
 

1. Assign service qualities to each component. 
2. If the component can be influenced, develop it according to the design 

hypothesis of Section 3.2. 
3. For each quality shared between adjacent components and arranged in order of 

priority, increase by technical means the strength of the coupling. 



4. Re-evaluate and adjust the adjacent components in the light of the coupling 
technique. 

 
In essence, because we can no longer start with a clean slate we employ a heuristic that 
first develops local optima and then, by iteration, tries to approach the global optimum. 

 
 
7.3 The design hypothesis at work 
 
7.3.1 Priority on performance 
 
Suppose that as in Section 4 performance is our highest-priority quality. Consequently, 
our design goal is to minimize the performance loss across the coupling between 
adjacent components. The basic principle should remain the same as in Section 4.1.2: 
Employ data staging  to take the access profile into account. In the centralized 
architecture of Section 4.1.2 and with page size exceeding record size by a large factor 
a single buffer in the storage engine proved sufficient. For loose coupling, though, we 
will have to replicate and rearrange data as we move upwards in the hierarchy and 
consider progressively wider context, as we already did in some sense in Figure 7. In 

Figure 11 Multidimensional architecture linking a client to a database system via data communication
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other words, data staging via buffering, or as it is more generally called, by caching will 
be needed for each component coupling. Figure 12 reflects the principle. 
 

 
Translating the conceptual architecture into a physical architecture is by no means 
trivial, though. Several options exist for a cache. 
 
• Separate component. The major advantage is that the autonomy of each component 

is maintained. No intrusion is necessary, each participating component remains as 
it is. On the other hand, all communication with the cache has to go through the 
middleware, adding considerable overhead and, hence, reducing the benefits of 
caching. 

• Integration into the middleware. As before, the autonomy of each component is 
maintained. Data communication overhead is reduced because the buffer is part of 
the middleware. Because caching now becomes a generic middleware service one 
may encounter difficulties in trying to tailor it to the data staging needs of a 
specific connection. 

Figure 12 Performance control in a four-tier architecture
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• Integration into a participating component. We have to decide which component to 
choose and, hence, to modify for the purpose. If we employ the context argument 
then this should be the component in the hierarchy which has the best knowledge of 
the context. 

• Migration. The cache is attached, i.e., physically coupled to the middleware or one 
component (edge-of-net or edge-of-server). The advantages of edge-of-server are 
the same as for a separate solution, but with lesser data communication overhead. 
Somewhat more coordination overhead arises between component and cache as 
compared to full integration. 

 
These options give rise to a wide range of combinations and thus to a large optimization 
space, as pointed out by Mohan [Mo01]. Examples abound. Caches for the connection 
between application server and database server, so-called application data caches, can 
be edge-of-database-server if they materialize database queries, provided the query load 
is fairly homogeneous. They are edge-of-application-server if they materialize local 
database queries [Lu02] or implement mapping functionality, e.g., object-relational 
mapping as in J2EE container-based persistency. Integrated solutions are those where 
application data is cached through runtime objects designed by the application 
developer, as in J2EE bean-based persistency. 
 
At the upper end, Web page caching usually is integrated into the WWW server, i.e., not 
directly accessible by the client through a separate service. Beyond the simple task of 
caching static pages, there are many approaches for caching dynamically generated 
Web pages. Often, edge-of-net caches known as Web proxy caches are added to the 
connection between WWW client and WWW server. 
 
Novel challenges arise for the connection between WWW server and application 
server. Whereas database servers and Web servers offer a fairly narrow generic 
functionality, application servers may offer extensive and complex services that vary 
widely across servers. Consequently, all communication is via service function calls, 
e.g., in case of object-orientation via method calls. Since there is little likelihood that 
method calls are shared across different Web servers nor across different applications 
on the same Web server, the most natural solution seems one of cache integration into 
the Web server (method cache) [PW02]. 
 
7.3.2 The curse of consistency 
 
Our notion of consistency refers to interpretability of the database as a possible state 
of the environment. This leaves consistency in the hands of the database server in our 
tiered architecture. If the database schema remains the same across all servers the 
meaning of the data is preserved across them. Conversely, if mappings take place in the 
caches the consistency may become endangered. In general, mappings are no longer 
generic so that an orthogonal solution along the lines of Section 4.1.3 seems more 
difficult to achieve. 
 
A stricter notion associates consistency with the current state of the environment and 
enforces it by transactions. As data move upwards from peripheral storage across the 



caches where they become replicated and rearranged according to the staging strategy, 
they become progressively more removed from the database state. Just consider that 
changes on the upper tiers propagate downwards with certain delays. The effect is 
known as the cache coherency or cache invalidation problem. If we followed the 
orthogonal approach of Section 4.1.4 we would have to add a global transaction 
manager to Figure 12 as a new, separate component. Indeed, such a solution is part of 
distributed systems or of middleware systems. On the downside, distributed 
transactions have a negative effect on both, performance and component autonomy. 
 
If one is willing to deviate from strict consistency to a certain degree, solutions that 
control the propagation of changes downwards to the database server and from there 
upwards to other servers come into play. Examples are push versus pull strategies, 
synchronous versus asynchronous propagation, automatic refresh. Migrated caches 
seem to offer advantages over integrated caches because one may specify and enforce 
strategies without knowledge of and effects on the inner working of the servers. 
 
A somewhat bitter conclusion is that in tiered architectures, as opposed to layered 
architectures, QoS parameters show considerable interdependence, i.e., less 
orthogonality. The optimum across all parameters is much more tedious to find and 
requires repeated iterations. 
 
7.3.3 Adding robustness 
 
In Section 4.1.4 robustness was defined in terms of transactions. As such it depends on 
strict consistency. Strict consistency, as we just noted, must be enforced by distributed 
and perhaps longer-duration transactions. As before, if one is willing to relax 
robustness and thus can do without a global transaction manager, local techniques for 
non-repudiation or irrevocability as in e -commerce take the place of strict consistency. 
On the other hand, since consistency relates solely to the database server, the caches 
may serve as a log for semantically richer transactions. 
 
We observe again that robustness can not always be treated as an orthogonal quality 
because each connection between components may be individually affected. 
 
7.3.4 Privacy protection 
 
In Section 5.1 we viewed privacy protection through the concept of purpose and offered 
a solution for the database server that ensured that only those data were accessible 
whose purpose fitted the purpose of the query. Let’s continue the speculation from 
there. We note that in the hypothetical architecture of Figure 7 data had already to be 
replicated on the upper layers. Hence, the caches of Figure 12 seem to be ideally suited 
to carry the quality of purpose up to higher tiers as purpose becomes redefined in a 
broader context. At the same time, though, Figure 7 introduced a firewall to separate 
the single query purpose from the data with their many purposes. Likewise, each 
connection would have to include a firewall to separate purposes. 
 
 



8 Conclusion 
 
Did we meet our self-imposed challenge to demonstrate that  architectural design can 
be treated with some scientific rigor, that it can be made to follow a methodology that 
can be organized around well-defined criteria? We must leave it up to the reader to 
decide. By developing a design hypothesis and applying it mostly to established 
architectures a posteriori, we have so far only circumstantial evidence that the 
methodology is up to the task. Part of the evidence is that by changing the weight of the 
design criteria novel architectures may evolve. Even more striking is the fact that 
methodical design may reveal larger design spaces than initially conceived.  
 
The design hypothesis itself revolves around the concept of service and service 
hierarchies. Services are described in terms of functionality and qualities. The 
hypothesis attempts to construct service hierarchies by decomposing service 
functionality under the guidance of a service quality chosen as the prime quality. The 
expectation is that service qualities are sufficiently orthogonal so that others can be 
taken care of simply by local additions or separate components. We could demonstrate 
that the method holds up reasonably well for layered architectures. 
 
For component architectures where service qualities can only be controlled by proper 
choice of components and by regulating the connections between them we had to 
modify the hypothesis. We demonstrated why we suspect that with the smaller range of 
options we have to sacrifice the orthogonality of qualities, resulting in more iterations 
to arrive at a design that meets given criteria. Nonetheless, even in this situation the 
service philosophy seems to provide a suitable framework. 
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