
Information System Architectures: From Art to Science

Peter C. Lockemann
Fakultät für Informatik
Universität Karlsruhe

Postfach 6980
76128 Karlsruhe

lockeman@ipd.uka.de

Abstract: The presentation claims that architectural design plays a crucial role in
system development as a first step in a process that turns a requirements
specification into a working software and hardware system. As such, architectural
design should follow a rigorous methodology – a science – rather than intuition – an
art. Our basic premise is that requirements in information systems follow a service
philosophy, where services are characterized by their functionality and quality-of-
service parameters. We develop a design hypothesis that takes the service
characteristics into account in a stepwise fashion. We then validate the hypothesis
for traditional database characteristics, demonstrate for novel requirements how
these would affect architectures, and finally apply it to the current 4-tier server
architectures.

1 Motivation

Information systems grow in the diversity of their application domains, number of
users, and geographic distribution, but so does their complexity in terms of the number
and functionality of components and the number of connections between these. An
almost bewildering multitude of architectural patterns has appeared over the more
recent past, that try to bring order into the evolving chaos. To name just a few of the
buzzwords, take layered architectures, n-tier architectures, component architectures,
middleware, vertical architectures, horizontal architectures, enterprise this-and-that.
Nonetheless, it seems that these architectures have enough in common so that one
suspects that they just look at similar phenomena from different perspectives,
emphasize different aspects, or explore issues to different depths.

The premise of this paper is that architectural design plays a crucial role in system
development. Unfortunately though, architectural system design does not seem to have
too many friends. Typical excuses are that “top-down designs never work anyway
because they ignore the technical possibilities and opportunities”, that “even the
cleanest architecture deteriorates over time due to the many additions and
modifications on short notice”, or that “architectures emphasize order over
performance”. We suspect that the real reason is the lack of a comprehensive,
systematic and unifying approach to architectural design that makes the patterns in
some sense comparable.

We claim that architectural design is the first step in a process that turns a
requirements specification into a working software and hardware system and, hence,

could be seen as “programming-in-the-very-large”. Since it is an accepted doctrine that
mistakes when caught in the early stages are much cheaper to correct than when
discovered in the late stages, good architectural system design could be of enormous
economical potential.

The purpose of this paper is to take a first step in the direction of a methodology for
architectural design. Or in other words, we submit that architectural design should
follow a methodology and not intuition, i.e., should be treated as a science and not as an
art. In order not to become overly ambitious, and to stay within the confines of a
conference paper, we will limit ourselves to information systems as the synthesis of
data base and data communication systems, with more emphasis on the former.

2 Services

2.1 Services and resources

Since we claim that architectural design is the first step in a process that turns a
requirements specification into a working software and hardware system, an essential
ingredient of the design method is a uniform and rigorous requirements specification.
Requirements is something imposed by an outside world. For information systems the
outside world are the business processes in some real-world organization such as
industry, government, education, financial institutions, for which they provide the
informational support. Figure 1 illustrates the basic idea.

The counterpart of business processes in an information system are informational
processes. Business processes proceed in a linear (as in Figure 1) or non-linear order
of steps, and so do the informational processes. To meet its obligations, each step
draws on a number of resources. Resources are infrastructural means that are not tied
to any particular process or business but support a broad spectrum of these and can be
shared, perhaps concurrently, by a large number of processes. In an information system
the resources are informational in nature. Because of their central role, resources must
be managed properly to achieve the desired system goals of economy, scale, capacity
and timeliness. Therefore, access to each resource is through a resource manager. In
the remainder we use the term information systems in the narrower sense of a
collection of informational resources and their managers.

What qualifies as a resource depends on the scope of a process. For example, in
decision processes the resources may be computational such as statistical packages,
data warehouses or data mining algorithms. These may in turn draw on more generic
resources such as database systems and data communication systems.

What is of interest from an outside perspective is the kind of support a resource may
provide. Abstractly speaking, a resource may be characterized by its competence .
Competence manifests itself as the range of tasks that the resource manager is capable
of performing. The range of tasks is referred to as a service. In this view, a resource
manager is referred to as a service provider (or server for short) and each subsystem
that makes use of a resource manager as a service client (or client for short).

2.2 Service characteristics

The relationship between a client and a server is governed by a service level agreement.
In this agreement the server gives certain guarantees concerning the characteristics of
the services it provides. From the viewpoint of the client the server has to meet certain
obligations or responsibilities.

The responsibilities can be broadly classified into two categories. The first category is
service functionality and covers the collection of functions available to a client and
given by their syntactical interfaces (signatures) and their semantic effects. The
semantic effects often reflect the interrelationships between the functions due to a
shared state. Functionality is what a client basically is interested in.

Figure 1
Business processes, informational processes and resources

Informational
process 1

Resource manager 1 Resource manager 2 Resource manager 3 Resource manager 4

Process step 1 Process step 2 Process step 3 Process step 4

Process step 1 Process step 2 Process step 3 Process step 4 Process step 5

Informational
process 2

Business
process

The second category covers the qualities of service . These are non-functional
properties that are nonetheless considered essential for the usefulness of a server to a
client.

2.3 Service qualities

To make the discussion more targeted, we study what technical qual ities of service we
come to expect from an information system.

Ubiquity. In general, an information system includes a large – in the Internet even
unbounded - number of service providers. Access to services should be unrestricted in
time and space, that is, anytime between any places. Ubiquity of information services
makes data communication an indispensable part of information systems.

Durability. Information services have not only to do with deriving new information
from older information but also act as a kind of business memory. Access to older
information in the form of stored data must remain possible at any time into an
unlimited future, unless and until the data is explicitly overwritten. Durability of
information makes database management a second indispensable ingredient of
information systems.

Interpretability. In an information system, data is exchanged across both, space due to
ubiquity and time due to durability. Data carries information, but it is not information
by itself. To exchange information, the sender has to encode its information as data, and
the receiver reconstructs the information by interpreting the data. Any exchange should
ensure, to the extent possible, that the interpretations of sender and receiver agree, that
is, that meaning is preserved in space and time. This requires some common
conventions, e.g., a formal framework for interpretation. Because information systems
and their environment usually are only loosely coupled, the formal framework can only
reflect something like a best effort. Best-effort interpretability is often called
(semantic) consistency.

Robustness. The service must remain reliable, i.e., guarantee its functionality and
qualities to any client, under all circumstances, be they errors, disruptions, failures,
incursions, interferences. Robustness must always be founded on a failure model.
There may be different models for different causes. For example, a service function
must reach a defined state in case of failure (failure resilience), service functions mus t
only interact in predefined ways if they access the same resource (conflict resilience),
and the effect of a function must not be lost once the function came to a successful end
(function persistency).

Security. Services must remain trustworthy, that is, show no effects beyond the
guaranteed functionality and qualities, and include only the predetermined clients, in
the face of failures, errors or malicious attacks.

Performance. Services must be rendered with adequate technical performance at given
cost. From a client’s perspective the performance manifests itself as the response time.
From a whole community of clients the performance is measured as throughput.

Scalability. Modern information systems are open systems in the number of both,
clients and servers. Services must not deteriorate in functionality and qualities in the
face of a continuous growth of service requests from clients or other servers.

3 Service hierarchies

3.1 Divide-and-conquer

Given a requirements specification in terms of service functionality and qualities on
the one hand and a set of available basic, e.g., physical resources from which to
construct them on the other hand, architectural design is about solving the complex task
of bridging the gap between the two. The time-proven method for doing so is divide-and
conquer which recursively derives from a given task a set of more limited tasks that can
be combined to realize the original task. However, this is little more than an abstract
principle that still leaves open the strategy that governs the decomposition.

We look for a strategy that is well-suited to our service philosophy. Among the various
strategies covered in [St02] the one to fit the service philosophy best is the assignment
of responsibilities. In decomposing a larger task new smaller tasks are defined, that
circumscribe narrower responsibilities within the original responsibility (Figure 2). If
we follow Section 2.2, a responsibility no matter what its range is always defined in
terms of a service functionality and a set of service qualities. Hence, the
decomposition results in a hierarchy of responsibilities, i.e., services, starting from the

Figure 2 Divide-and-conquer for services

functionality

service

higher-level responsibility

lower-level responsibilities

composition:
assemble higher-level
responsibility

qualities

functionality

service

qualitiesfunctionality

service

qualitiesfunctionality

service

qualities

decomposition:
divide higher-level

responsibility

semantically richest though least detailed service at the root and progressing
downwards to ever narrower but more detailed services. The inner nodes of the
hierarchy can be interpreted as resource managers that act as both, service providers
and service clients.

3.2 Design hypothesis

All we know at this point is that decomposition follows a strategy of dividing
responsibilities for services. Services encompass functionality and a large number of
quality-of-service (QoS) parameters. This opens up a large design space at each step. A
design method deserves its name only if we impose a certain discipline that restricts
the design space at each step.

The challenge now is to find a discipline that both, explains common existing
architectural patterns, and systematically constructs new patterns if novel requirements
arise. We claim that the service perspective has remained largely unexplored so that
any discipline based on it is as yet little more than a design hypothesis.

Our method divides each step from one level to the next into three parts.

Functional decomposition.
This is the traditional approach. We consider service functionality as a primary
criterion for decomposition. Since the original service requirements reflect the needs
of the business world, the natural inclination is to use a pure top-down or stepwise
decomposition strategy. At each design step a service functionality is given, and we
must decide whether, and if so how, the functionality should be further broken up into a
set of less powerful obligations and corresponding service functionalities to which
some tasks can be delegated, and how these are to be combined to obtain the original
functionality. However, the closer we come to the basic resources the more these will
restrict our freedom of design. Consequently, at some point we may have to reverse the
direction and use stepwise composition to construct a more powerful functionality
from simpler functionalities.

Propagation of service qualities.
Consider two successive levels in the hierarchy and an assignment of QoS-parameters
to the higher-level service, we now determine which service qualities should be taken
care of by the services on the upper and lower levels. Three options exist for each
quality. Under exclusive control the higher-level service takes sole responsibility, i.e.,
does not propagate the quality any further. Under partial control it shares the
responsibility with some lower-level service, i.e., passes some QoS aspects along.
Under complete delegation the higher-level service ignores the quality altogether and
entirely passes it further down to a lower-level service. For partial control or complete
delegation our hope is that the various qualities passed down are orthogonal and hence
can be assigned to separate and largely independent resource managers.

Priority of service qualities.
Among the service qualities under exclusive or partial control, choose one as the
primary quality and refine the decomposition. Our hope is that the remaining qualities
exert no or only minor influences on this level, i.e., are orthogonal to the primary
quality and thus can be taken care of separately.

Clearly, there are interdependencies between the three parts so that we should expect to
iterate through them.

4 Testing the design hypothesis

4.1 Classical 5-layer architecture

Even though it is difficult to discern from the complex architecture of today’s
relational DBMS, most of them started out with an architecture that took as its
reference the well-published 5-layer architecture of System R [As79, Ch81]. Up to
these days the architecture is still the backbone of academic courses in database system
implementation (see, e.g., [HR99]). As a first test we examine whether our design
hypothesis could retroactively explain this (centralized) architecture.

4.1.1 Priority on performance

We assume that the DBMS offers all the service qualities of Section 2.3 safe ubiquity,
and we ignore security for the time being. The service functionality is determined by
the relational data model in its SQL appearance.

As noted in Section 2.3, durability is the raison d’être for DBMS. Durability is first of
all a quality that must be guaranteed on the level of physical resources, by non-volatile
storage. Let’s assume that durability is delegated all the way down to this level. Even
after decades durability is still served almost exclusively by magnetic disk storage. If
we use processor speed as the yardstick, the overwhelming bottleneck, by six orders of
magnitude, is access latency, which is composed of the movement of the mechanical
access mechanism for reaching a cylinder and the rotational delay until the desired data
block appears under the read/write head. Consequently, performance dwarfs all other
service qualities in importance on the lowest level. Considering the size of the
bottleneck and the fact that performance is also an issue for the clients, it seems to
make sense to work from the hypothesis that performance is the highest-priority
quality across the entire hierarchy to be constructed.

4.1.2 Playing off functionality versus performance

Since we ignore for the time being all service qualities except performance, our design
hypothesis becomes somewhat simplified: There is a single top-priority quality, and
because it pervades the entire hierarchy it is implemented by partial control. The
challenge, then, is to find for each level a suitable benchmark against which to evaluate

performance. Such a benchmark is given by an access profile, that is a sequence of
operations that reflects, e.g., average behavior or high-priority requests. We refer to
such a benchmark as data staging .

Consequently, our main objective on each level is determining a balance of
functionality and data staging. As Figure 3 illustrates, the balancing takes account of a
tandem of knowledge. On the way down we move from more to less expressive data
models and at the same time from a wider context, i.e., more global knowledge of
prospective data usage, to a narrower context with more localized knowledge of data
usage. The higher we are in the hierarchy, the earlier can we predict the need for a data
element. Design for performance, then, means to put the predictions to good use.
Based on these abstractions we are indeed able to explain the classical architecture.

• We start with the root whose functionality is given by the relational model and

SQL. The logical database structure in the form of relations is imposed by the
clients. We also assume an access profile in terms of a history of operations on the
logical database. We compress the access profile into an access density that
expresses the probability of joint use of data elements within a given time interval.
The topmost resource manager can now use the access density to rearrange the data
elements into sets of jointly accessible elements. It then takes account of
performance by translating queries against the relational database to those against
the rearranged, internal database. The data model on this internal level could very
well still be relational. But since we have to move to a less expressive data model,
we leave only the structure relational but employ tuple operators rather than set
operators. Consequently, the topmost resource manager also implements the
relational operators by programs on sets of tuples.

• What is missing from the access density is the dynamics – which operations are
applied to which data elements and in which order. Therefore, for the next lower
level we compress the access profile into an access pattern that reflects the
frequency and temporal distribution of the operations on data elements. There is a
large number of so-called physical data structures tailored to different patterns –

Figure 3 Balancing functionality and performance on a level

resource manager i

data model Di

functionality

more expressive
data model

less expressive
data model

data model Di-1

wider
usage context

narrower
usage context

access profile

data staging

take hash algorithms for associative access, list structures for sequential access,
trees for combined associative and sequential access. The resource manager on this
level accounts for performance by assigning suitable physical structures to the sets
of the internal data model. The data model on the next lower level provides a library
of physical data structures together with the operators for accessing them.

• It is not all clear how to continue from here on downwards because we have
extracted all we could from the access profile. Hence we elect to change direction
and start from the bottom. Given the storage devices we use physical file
management as provided by operating systems. We choose a block-oriented file
organization because it makes the least assumptions about subsequent use of the
data and offers a homogeneous view on all devices. We use parameter settings to
influence performance. The parameters concern, among others, file size and
dynamic growth, block size, block placement, block addressing (virtual or
physical). To lay the foundation for data staging we would like to control physical
proximity: adjacent block numbering should be equivalent to minimal latency on
sequential, or (in case of RAID) parallel access. The data model is defined by
classical file management functions.

• The next upper level recognizes the fact that on the higher levels data staging is in
terms of sets of records. It introduces its own version of sets, namely segments.
These are defined on pages with a size equal to block size. Performance is
controlled by the strategy that places pages in blocks. Particularly critical to
performance is the assumption that record size is much lower than page size so that
a page contains a fairly large number of records. Hence, under the best of
circumstances a page transfer into main memory results in the transfer of a large
number of jointly used records. Buffer management gives shared records a much
better chance to survive in main memory. The data model on this level is terms of
sets of pages and operators on these.

• This leaves just the gap to be closed between sets of records as they manifest
themselves in the physical data structures, and sets of pages. Given a page, all
records on the page can be accessed with main memory speed. Since each data
structure reflects a particular pattern of record operations, we translate the pattern
into a strategy for placing jointly used records on the same page (record
clustering). The physical data resource manager places or retrieves records on or
from pages, respectively.

Figure 4 summarizes the discussion.

4.1.3 Taking consistency into consideration

Data models represent generic functionalities, that is they are described by
polymorphic type systems. Consequently, the managers in the service hierarchy of
Section 4.1.2 deal with databases and queries generically. On the other hand, databases
and queries against them must be monomorphic to be able to process them. Data
models are instantiated to monomorphic type systems by specifying database schemas
that are derived from the application semantics. Hence, consistency manifests itself in
database schemas.

We conclude from the design process in Section 4.1.2 that only the upper two
managers for logical and internal databases need a rich type system. Hence, consistency
is the responsibility of just the upper two managers. Access density and patterns must
be expressed in terms of the database schema to make sense.

Both managers use the schema to interpret the queries and to control the performance.
Both access the schema but have no need to manage by themselves the functions for
accepting, checking, storing and retrieving the schema. Nor does any of the lower
managers appear to be a candidate to which to delegate this functionality. Consequently,
we add a new service, meta data management, that is used by the two managers. As a
service shared by two levels it seems to fall outside the hierarchy of Figure 4 (Figure
5). With the new service we may again associate service qualities such as (meta-
)consistency or durability so that the design process should be repeated for the new
branch.

Figure 4 Reference service hierarchy for set/record-oriented database management systems

sets of records
descriptive queries

record clustering

functionality data staging

access density

access patterns

physical proximity

sets of records
record-oriented access

sets of records
record-oriented access

segments, pages, records
page-oriented operators

block-oriented files
file management operators

page placement strategy
caching strategy

logical data model
data rearrangement

query translation and optimization
operator mapping

internal data model

assignment of physical data structures
to internal sets

physical data structures

implementation on pages

segment management

mapping pages to blocks
buffer management

device interface

file management

parameter control

4.1.4 Adding robustness

Consistency in terms of the database schema guarantees that the database reflects a
possible state of the environment. Transactions can ensure that the database
corresponds to the current state. Consequently, robustness with failure resilience,
conflict resilience and function persistency is defined in terms of transactions as
atomic processing units. With the exception of Weikum’s multi-level transactions
[We88] all reference architectures deal with transactional qualities (at least if they are
ACID) on levels that are devoid of application semantics. In the design of Section 4.1.2
the proper level for transaction management would then be the segment level.

The segment level must now take care of two service qualities, performance and
robustness. According to our design hypothesis we have to decide if the two are
orthogonal. Intuitively one indeed considers them orthogonal because one would like to
have performance even if there was no robustness, and robustness even if performance
was not an issue. As a result one would split the segment level into two resource

Figure 5 Augmented reference service hierarchy of Figure 4

logical data model

data rearrangement
query translation and optimization

operator mapping

internal data model

assignment of physical data
structures

to internal sets

physical data structures

implementation on pages

segment management

mapping pages to blocks
buffer management

device interface

file management

parameter control

metadata model

metadata management

archive management

backup
long-range storage

transaction managem’t

scheduling
logging
recovery

managers, segment management proper and transaction management. Figure 5 shows
the extension of the architecture. In fact, the two qualities are not entirely independent
of one another so that the two managers should closely communicate with one another.

4.1.5 Adding durability

Peripheral storage may itself be subject to technical failures or external catastrophic
events. Consequently, there is more to durability than what we considered in Section
4.1.2. The arguments in Section 4.1.4 can be repeated here: Durability is a generic
property that ought to apply irrespective of application semantics, and it is orthogonal
to performance and robustness (to the latter because of its much longer time horizon).
Consequently, we add another resource manager, archive management, on the segment
level (Figure 5).

4.2 Semistructured databases

Our design hypothesis held up quite well to explain the classical 5-layer architecture
both in its core and its extensions. A somewhat harder test would be to try and apply the
hypothesis to an area where there is less agreement as to the best reference
architecture: semistructured databases or more specifically, XML databases.

4.2.1 Front-ends

For the sake of comparison with Section 4.1, let us assume that there is still
consistency to be observed, that is, there is a database schema (either DTD or XML
Schema). Under these circumstances we currently find two approaches. One imposes
external factors, either technical such as interoperability between DBMS on the basis
of XML as the data exchange format, or economical such as minimal cost of re-
implementation. The result is some kind of XML front-end to a relational DBMS. The
second approach builds a tailored, so-called native DBMS for XML.

In terms of our design hypothesis, one could explain the front -end as singling out the
external factors as additional qualities of service that are kept under exclusive control.
The XML data model significantly differs from the relational data model, though. The
data structures are hierarchies rather than flat tuple sets, access is navigational by path
expressions rather than set-algebraic, the nodes in the tree may have structural
differences even if they satisfy the same type, and because of the document history
nodes may include long texts or other media data. Consequently, the backside of the
approach is that the front-end, if it deals with performance at all, does so on criteria
that differ from the rest of the system.

4.2.2 Native systems

There is no reason to believe that performance plays a lesser role for (pure) XML
databases. Therefore the design process of Section 4.1.2 based on seamless

performance should apply here as well, though we should expect that the differences in
the data model have a significant effect.

• The root functionality is now given by XML, with the logical database structure in

the form of trees and reading access by path expressions that identify subtrees. For
writing access there is as yet no common standard. Some vendors prefer simple
delete/write for modifications, or experiment with XSLT. Consequently, there is
no clear way to separate access density and patterns – both take the form of
navigated trees. Density is complicated by the fact that nodes have large structural
variances as to number of attributes, cardinality of same-tagged successors and size
of attached media data, and patterns allow various selection choices due to the
structural variances. Indeed, native XML database products seem to collapse the
two upper resource managers of the relational system into a single, fairly complex
manager.

• The next lower resource manager is now something akin to the physical data
structures. Basically one would expect three kinds of data structures: Subtrees of
XML structures, index structures for navigating through XML structures, and
media data of possibly large size.

• Each of these physical structures can then be optimized with regard to
performance. Index structures come closest to the relational situation and may thus
be realized on the segment level similar to Section 4.1.2. Subtrees may vary widely
in size so that either large pages sizes must be chosen or subtrees may span a
number of pages. Both require solutions that differ somewhat from that typical for
relations, so that segment management becomes definitely more complicated.
Media data would extend across many pages, moreover classical buffer caching
would make little sense for them. They would, therefore, directly draw on the
services of file management.

Figure 6 summarizes the discussion. Viewed superficially the architecture looks
simpler than for the relational case. In fact, though, it is just less structured because it
seems more difficult to decompose the services. In the end each resource manager in
the architecture is more complicated than in the relational case. We note in passing that
the problem of media data is also known as well for relational systems where large
binary fields are used for the purpose.

5 Putting the design hypothesis to work

Section 4 seems to bear out the validity of our design hypothesis. But does it really? Or
– so one might suspect – did we just formulate the hypothesis to fit the well-
established architectures? Better proof would be to find constructive solutions to some
novel situations.

5.1 Hippocratic databases

In a recent paper [Ag02] Rakesh Agrawal et al. introduce the concept of Hippocratic
databases for database systems that should enforce all political and societal rules to
protect the privacy of data. The authors translate the requirement into the service
quality of purpose: Any acquisition of data, their durability over a time span, and any
queries on them have to serve a specific purpose. A purpose should be formulated in a
precise fashion, all persons affected should agree, and there should be no access to the
data without the purpose. The authors then go on to propose an architecture. The first
impression is that the authors pretty much stick to the servi ce hierarchy of Section 4.1
and just augment it by additional, albeit complex components. In other words, the
authors do not question the prevalence of performance.

What would have happened if they had done so? If they had made purpose their prime
quality? Let’s try for a hypothetical answer (Figure 7). Suppose that we query the
database in the usual way, except that the query is accompanied by its purpose. We
expect that the result is those data whose purpose is compatible with the purpose of the

Figure 6 Service hierarchy for semistructured database systems

XML structures

structural mapping
query translation and optimization
assignment of physical data structs

to subtrees and media fields

subtree implementations

segment management

mapping pages to blocks
buffer management

device interface

file management

parameter control

media data to block clusters

physical data structuresphysical data structures

index implementation

physical data structures

query. All other data remain invisible to the client, i.e., become visible neither by
accident nor by intent.

Notice that the purposes of the database are not open to inspection by regular clients.
Consequently, they can only be seen from the second level on downwards. The
uppermost level will confine itself to standard query processing into, e.g., a query graph
together with information on the query purpose. This is input to the second level
together with the rules, e.g., authorization rules, on database purposes. This allows to
compute the visible nodes in the query graph. The third level sets up the physical data

Figure 7 Hypothetical service hierarchy for Hippocratic databases

sets of records
descriptive queries

purpose descriptions

Functionalities
(data model)

Performance

sets of records
query graphs

purpose descriptions

sets of records
with identical purpose
record-oriented access

data records and
main storage blocks

block-oriented access

logical data model

query processing

purpose bound data model

query graph transformation with
propagation of query and database

purposes

secure internal data model

implementation of physical
data structures for sets and indexes,

operator implementations

secure buffers

protected cache management,
placement of records in segments + pages,

extraction of records from pages

(query, query purpose)

traditional storage engine

Database purposes
(rules, authorizations)

Purpose-restricted visibility

Full visibility

Firewall

structures for the visible data and computes their materializations. In other words, this
level will separate the visible data from the invisible ones and reproduce the former in a
separate main storage area. The next lower level is the most critical one because it must
do the physical separation, for instance in a well-protected buffer area, and thus is
something akin to an internal firewall. Only below can we proceed with the traditional
storage engine from the level of segment management on downwards. And only from
there on replaces performance purpose as the prime quality.

There is an apparent conclusion: Privacy protection in DBMS comes at the price of
lower performance.

5.2 Incorruptible databases

While Hippocratic databases restrain access according to purpose no matter what the
intent, incorruptible databases restrain changes no matter what the purpose. More
precisely, the goal of incorruptible databases is to allow only those updates that satisfy
certain rules, i.e., that make sense or seem plausible. Incorruptibility can be seen as a
special kind of consistency. Consistency thus becomes the prevailing quality of
service.

Plausibility can be tested in various ways. For example, one may employ statistical and
data mining techniques to detect outliers, or one may formulate somehow restricted
first-order logic formulae to check new input in the light of absolute constraints, the
current database state or the previous history of database states. The second approach
has a lot of similarity to deductive databases. We try to follow this approach.

Deductive constraint checking is known to be compute-bound rather than I/O-bound.
Clearly then, performance is again the quality of priority. But in contrast to Section 4
where it was due to durability it is now due to consistency. Moreover, whereas in
Section 4 we assume queries to be spontaneous or any of a large number of
parameterized queries, consistency constraints are stable over a long period of time so
that preprocessing makes sense. Further, a large number of constraints must be
observed at any one time so that optimization techniques can employ additional
techniques such as common subexpressions [He96]. Consequently, the service
hierarchy splits at the top into a preprocessing (“compile”) service and a query-and-
update (“just-in-time”) service. The later does the just-in-time rule processing
employing the results of the precompiled checking modules. Deductive databases
usually employ relational databases that have been augmented by special algebraic
operators. Both precompilation and just-in-time optimization should generate queries
that fetch into a special main memory cache those database portions to be checked, but
that are formulated in such a way as to delegate the optimization with respect to data
staging to traditional levels of a DBMS. Figure 8 summarizes the hypothetical solution.

6 Tight and loose coupling

6.1 Layered and component architectures

The reader may have noticed that what we have constructed so far were service
hierarchies. These are not yet architectures but just the preliminary steps towards an
architecture.

Figure 8 Hypothetical service hierarchy for incorruptible databases

constrained logical data model

routing

compile services

deductive processing of constraint sets into
inference modules and relational queries

queries, constraints

traditional storage engine

just-in-time services

deductive processing of queries using the
inference modules

relational services

application of augmented relational
operators to cached database sections

relational data model

query translation and optimization
operator mapping

physical data structures

implementation on pages

System architectures fall into two broad categories, layered architectures and
component architectures. Two successive levels in a service hierarchy form
successive layers if there is a close coupling between the two. If the coupling is loose,
the levels form separate components.

Intuitively speaking, close coupling reflects a higher degree of interdependence, loose
coupling a lesser degree. In view of the broad meaning of interdependence it will be
difficult to find a single factor that determines the strength of coupling, and therefore
to give a precise formulation. Instead we take a phenomenological approach.

• One conceivable criterion for loose coupling is that the two services either share

no resources, or do so free of conflicts. An example is services that run on
different computers or in different processes.

• One may consider as a case of loose coupling if two levels are separated by
exclusive control or by complete delegation, that is, if they attend to different
service qualities. Hence, the two share no responsibilities, and they can be
expected to pursue independent strategies and thus to achieve a fair degree of
autonomy.

• Even in case of partial control there may be a case for loose coupling if satisfying
the quality is achieved by moving in different directions, indicating that different
conditions come into play. Just remember the reversal of direction during the
design of the classical 5-layer architecture in Section 4.1.2 due to the
disappearance of application semantics.

• From software engineering it is well-known that the traffic density between two
resource managers, e.g., the number of service calls or messages per time unit,
determines the needed strength of the coupling. Higher densities require close
coupling to avoid a decline in performance.

• Finally, a service may be of general value to different service hierarchies and thus
be called from various clients. In this case close coupling would give an unfair
advantage to just one client.

These criteria may occur in combination, and are not even completely orthogonal.
Consequently, in a given situation there may still be a choice of whether to translate a
hierarchy into a layered or a component architecture.

6.2 Service hierarchies revisited

One can easily demonstrate that with the four criteria above there is more than one
architectural solution for the hierarchy of Section 4.1 (Figure 5). Fairly straightforward
is the case for metadata and archive management. Both have their own resources, the
top two levels of the hierarchy usually call on metadata only during certain start-up
phases, and archive management kicks in only at larger intervals. Hence, both are
natural components.

The boundary between physical data structures reflects a reversal of direction.
Therefore one may opt for two components comprising the levels above and below,
respectively. On the other hand, the two levels share the buffers located in the segment
level. As a consequence, there is also a high traffic density between the two by placing
and accessing records. Further traffic arises from resolving conflicts between the two.
And indeed, during the long history of database systems both, complete layering and
separation into two components, can be found, although the latter has mostly been
confined to prototypes.

Similar considerations hold for transaction management. Transaction management has
(almost) exclusive control over robustness, suggesting a component solution. However,
usually transaction management carries some responsibility for performance, indicated
by sharing the buffer with segment management. Traditionally, the performance
argument won the day, and transaction management migrated into segment management.
An exception is the QoS of conflict resilience which has lately even shown a tendency
to move outside the DBMS.

Figure 9 illustrates the extreme of full componentization.

database management

logical data model

database
(ressource)
database

(ressource)

query engine

storage engine
(segment management)

file management
(operating system)

data dictionary
(metadata

management)

transaction
management

archive
management

Figure 9 Component architecture for the service hierarchy of Figure 5

One may apply a similar design strategy to the other service hierarchies. For example,
for the hierarchy of Section 4.2 (Figure 6) there is a somewhat stronger though still not
overwhelming argument for providing separate storage engines. In Figure 7 the firewall
mandates loose coupling, with a separate storage engine and perhaps part of the secure
buffers level placed in a separate component. In Figure 8 the compile services qualify
as a component, and the boundary between relational services and relational data model
has many traits of loose coupling.

We conclude that from a programming-in-the-very-large standpoint, if given a service
hierarchy, components determine a coarse-granular system architecture and layers the
fine-granular architecture within a component.

Figure 10 Four-tier architecture in a multidimensional framework

Application Server Application Server

. . .

. . .

Middleware

Client Client Client

Database Server other Servers
. . .

Resources

WWW Server WWW Server
. . .

Business logic

Presentation

Application

7 Coarse-granular component architectures

7.1 Tiered and multi-dimensional architectures

Information systems are more than just database systems. Indeed today, database
systems are almost entirely hidden behind middleware and application servers. On the
other hand, modern information systems are still service providers so that our design
approach should carry over to these much coarser architectures.

As just mentioned, coarse architectures should be component architectures. The
services may still be part of a service hierarchy. If this is the case we speak of a tiered
architecture. A modern example is the 4-tier architecture with presentation clients,
presentation servers, application servers and data managers (Figure 10).

The 4-tier architecture needs an infrastructure for communication and interoperability,
commonly referred to as middleware. Figure 10 illustrates how the middleware as a
component is called from each level in the service hierarchy so that it seems to pervade
the entire hierarchy. One may visualize such an arrangement as the hierarchy forming
one dimension and the common component (which in all likelihood is itself a service
hierarchy) defining a second dimension. We refer to such an arrangement as a multi-
dimensional architecture.

To illustrate the principle, consider as a very simple example Figure 11 [Ab03]. It
shows a database server together with some application client. Both communicate
across a transmission network with its own layered architecture (in our case the bottom
four OSI/ISO levels). Space defines the third dimension.

7.2 Design hypothesis revisited

Take the architecture of Figure 10. Three of the four component types exhibit a
relatively narrow and standardized functionality: client, Web server and database server.
The specifics of an application – the business logic in the form of service functionality
and QoS parameters – are concentrated in just one component, the application server.

Compared to Sections 4 through 6 the situation is now different: The component
architecture is not of our own design but is being imposed – for good software
engineering reasons. All we can hope for is that each component does its best to meet
its QoS parameters. But as we all know, a set of local optima does not necessarily
result in the global optimum. To approach the latter, we modify our design hypothesis
as follows.

1. Assign service qualities to each component.
2. If the component can be influenced, develop it according to the design

hypothesis of Section 3.2.
3. For each quality shared between adjacent components and arranged in order of

priority, increase by technical means the strength of the coupling.

4. Re-evaluate and adjust the adjacent components in the light of the coupling
technique.

In essence, because we can no longer start with a clean slate we employ a heuristic that
first develops local optima and then, by iteration, tries to approach the global optimum.

7.3 The design hypothesis at work

7.3.1 Priority on performance

Suppose that as in Section 4 performance is our highest-priority quality. Consequently,
our design goal is to minimize the performance loss across the coupling between
adjacent components. The basic principle should remain the same as in Section 4.1.2:
Employ data staging to take the access profile into account. In the centralized
architecture of Section 4.1.2 and with page size exceeding record size by a large factor
a single buffer in the storage engine proved sufficient. For loose coupling, though, we
will have to replicate and rearrange data as we move upwards in the hierarchy and
consider progressively wider context, as we already did in some sense in Figure 7. In

Figure 11 Multidimensional architecture linking a client to a database system via data communication

physical layer

data link

network

transport

physical layer

data link

network

transport

client

physical medium

middleware middleware

logical data
model

internal data
model

physical data
structures

segment
management

file
management

other words, data staging via buffering, or as it is more generally called, by caching will
be needed for each component coupling. Figure 12 reflects the principle.

Translating the conceptual architecture into a physical architecture is by no means
trivial, though. Several options exist for a cache.

• Separate component. The major advantage is that the autonomy of each component

is maintained. No intrusion is necessary, each participating component remains as
it is. On the other hand, all communication with the cache has to go through the
middleware, adding considerable overhead and, hence, reducing the benefits of
caching.

• Integration into the middleware. As before, the autonomy of each component is
maintained. Data communication overhead is reduced because the buffer is part of
the middleware. Because caching now becomes a generic middleware service one
may encounter difficulties in trying to tailor it to the data staging needs of a
specific connection.

Figure 12 Performance control in a four-tier architecture

Application Server

Middleware

Client

Database Server

WWW Server

Cache

Cache

Cache

• Integration into a participating component. We have to decide which component to
choose and, hence, to modify for the purpose. If we employ the context argument
then this should be the component in the hierarchy which has the best knowledge of
the context.

• Migration. The cache is attached, i.e., physically coupled to the middleware or one
component (edge-of-net or edge-of-server). The advantages of edge-of-server are
the same as for a separate solution, but with lesser data communication overhead.
Somewhat more coordination overhead arises between component and cache as
compared to full integration.

These options give rise to a wide range of combinations and thus to a large optimization
space, as pointed out by Mohan [Mo01]. Examples abound. Caches for the connection
between application server and database server, so-called application data caches, can
be edge-of-database-server if they materialize database queries, provided the query load
is fairly homogeneous. They are edge-of-application-server if they materialize local
database queries [Lu02] or implement mapping functionality, e.g., object-relational
mapping as in J2EE container-based persistency. Integrated solutions are those where
application data is cached through runtime objects designed by the application
developer, as in J2EE bean-based persistency.

At the upper end, Web page caching usually is integrated into the WWW server, i.e., not
directly accessible by the client through a separate service. Beyond the simple task of
caching static pages, there are many approaches for caching dynamically generated
Web pages. Often, edge-of-net caches known as Web proxy caches are added to the
connection between WWW client and WWW server.

Novel challenges arise for the connection between WWW server and application
server. Whereas database servers and Web servers offer a fairly narrow generic
functionality, application servers may offer extensive and complex services that vary
widely across servers. Consequently, all communication is via service function calls,
e.g., in case of object-orientation via method calls. Since there is little likelihood that
method calls are shared across different Web servers nor across different applications
on the same Web server, the most natural solution seems one of cache integration into
the Web server (method cache) [PW02].

7.3.2 The curse of consistency

Our notion of consistency refers to interpretability of the database as a possible state
of the environment. This leaves consistency in the hands of the database server in our
tiered architecture. If the database schema remains the same across all servers the
meaning of the data is preserved across them. Conversely, if mappings take place in the
caches the consistency may become endangered. In general, mappings are no longer
generic so that an orthogonal solution along the lines of Section 4.1.3 seems more
difficult to achieve.

A stricter notion associates consistency with the current state of the environment and
enforces it by transactions. As data move upwards from peripheral storage across the

caches where they become replicated and rearranged according to the staging strategy,
they become progressively more removed from the database state. Just consider that
changes on the upper tiers propagate downwards with certain delays. The effect is
known as the cache coherency or cache invalidation problem. If we followed the
orthogonal approach of Section 4.1.4 we would have to add a global transaction
manager to Figure 12 as a new, separate component. Indeed, such a solution is part of
distributed systems or of middleware systems. On the downside, distributed
transactions have a negative effect on both, performance and component autonomy.

If one is willing to deviate from strict consistency to a certain degree, solutions that
control the propagation of changes downwards to the database server and from there
upwards to other servers come into play. Examples are push versus pull strategies,
synchronous versus asynchronous propagation, automatic refresh. Migrated caches
seem to offer advantages over integrated caches because one may specify and enforce
strategies without knowledge of and effects on the inner working of the servers.

A somewhat bitter conclusion is that in tiered architectures, as opposed to layered
architectures, QoS parameters show considerable interdependence, i.e., less
orthogonality. The optimum across all parameters is much more tedious to find and
requires repeated iterations.

7.3.3 Adding robustness

In Section 4.1.4 robustness was defined in terms of transactions. As such it depends on
strict consistency. Strict consistency, as we just noted, must be enforced by distributed
and perhaps longer-duration transactions. As before, if one is willing to relax
robustness and thus can do without a global transaction manager, local techniques for
non-repudiation or irrevocability as in e -commerce take the place of strict consistency.
On the other hand, since consistency relates solely to the database server, the caches
may serve as a log for semantically richer transactions.

We observe again that robustness can not always be treated as an orthogonal quality
because each connection between components may be individually affected.

7.3.4 Privacy protection

In Section 5.1 we viewed privacy protection through the concept of purpose and offered
a solution for the database server that ensured that only those data were accessible
whose purpose fitted the purpose of the query. Let’s continue the speculation from
there. We note that in the hypothetical architecture of Figure 7 data had already to be
replicated on the upper layers. Hence, the caches of Figure 12 seem to be ideally suited
to carry the quality of purpose up to higher tiers as purpose becomes redefined in a
broader context. At the same time, though, Figure 7 introduced a firewall to separate
the single query purpose from the data with their many purposes. Likewise, each
connection would have to include a firewall to separate purposes.

8 Conclusion

Did we meet our self-imposed challenge to demonstrate that architectural design can
be treated with some scientific rigor, that it can be made to follow a methodology that
can be organized around well-defined criteria? We must leave it up to the reader to
decide. By developing a design hypothesis and applying it mostly to established
architectures a posteriori, we have so far only circumstantial evidence that the
methodology is up to the task. Part of the evidence is that by changing the weight of the
design criteria novel architectures may evolve. Even more striking is the fact that
methodical design may reveal larger design spaces than initially conceived.

The design hypothesis itself revolves around the concept of service and service
hierarchies. Services are described in terms of functionality and qualities. The
hypothesis attempts to construct service hierarchies by decomposing service
functionality under the guidance of a service quality chosen as the prime quality. The
expectation is that service qualities are sufficiently orthogonal so that others can be
taken care of simply by local additions or separate components. We could demonstrate
that the method holds up reasonably well for layered architectures.

For component architectures where service qualities can only be controlled by proper
choice of components and by regulating the connections between them we had to
modify the hypothesis. We demonstrated why we suspect that with the smaller range of
options we have to sacrifice the orthogonality of qualities, resulting in more iterations
to arrive at a design that meets given criteria. Nonetheless, even in this situation the
service philosophy seems to provide a suitable framework.

References

[Ab03] Abeck, S., Lockemann, P.C., Schiller, J., Seitz, J.: Verteilte Informationssysteme –

Integration von Datenübertragungstechnik und Datenbanktechnik. dpunkt.verlag. 2003 (in
German)

[Ag02] Agrawal, R.; Kiernan, J.; Srikant, R.; Xu, Y.: Hippocratic databases. Proc. 28th Intnl.

VLDB Conference. 2002

[As79] Astrahan, M.M., et al.: System R: A relational database management system. IEEE

Computer. 12:5. 1979. 42-48

[Ch81] Chamberlin, D.D., et al.: A history and evaluation of System R. Comm. ACM 24:10. 1981.

632-646

[He96] Herzog, U.: Effiziente Konsistenzprüfung in Datenbanksystemen. Infix. 1996 (in German)

[HR99] Härder, T.; Rahm, E.: Datenbanksysteme: Konzepte und Techniken der Implementierung.

Springer, 1999 (in German)

[Lu02] Luo, Q.; Krishnamurthy, S.; Mohan, C.; Pirahesh, H.; Woo, H.; Lindsay, B.G.; Naughton,

J.F.: Middle-Tier Database Caching for e-Business. Proc. ACM SIGMOD Conference.
2002. 600-611

[Mo01] Mohan, C.: Caching Technologies for Web Applications. Tutorial, VLDB 2001.
http://www.almaden.ibm/u/mohan/Caching_VLDB2001.pdf

[PW02] Pfeifer, D.; Wu, Z.: A transparent client-side caching approach for application server

systems. Submitted for publication. 2002

[St02] Starke, G.: Effektive Software-Architekturen – Ein praktischer Leitfaden. Carl Hanser.

2002 (in German)

[We88] Weikum, G.: Transaktionen in Datenbanksystemen. Addison-Wesley. 1988 (in German)

