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Abstract: Web services technology is all about distributed computing. There is no 
fundamentally new basic concept behind this and related technologies. What is 
really new is the reach of Web services and its ubiquitous support by literally all 
major vendors. Most likely, heterogeneity will at the end no longer be an obstruc-
tion for distributed applications. This will have impact on application architectures, 
middleware, as well as the way in which people will think about computing and 
businesses use computing resources. We sketch these impacts as well as some ex-
emplary research work to be done to actually build the outline environment.  

 
 
1  Introduction 
 
Since the advent of Web services about two years ago most software vendors have em-
braced this technology and support it in their products. The spectrum of products sup-
porting Web services reach from database systems over application servers over standard 
applications to office suites; corresponding support in tools is already available too. And 
Web services became an integral aspect of modern system architectures (e.g. [13]). 
 
In a nutshell, a Web service is a virtual component that can be accessed via multiple 
formats and protocols. Such a component can be located anywhere in the network, e.g. 
on a machine on a different continent or within a thread in the same operating system 
process. Consequently, the environment for Web services is heterogeneous and distrib-
uted from the outset. Furthermore, Web services support a service-oriented architecture 
in which requestors can discover Web services and dynamically bind to them. But the 
primary focus of Web service technology is communication between Web services 
themselves, i.e. requestors are again Web services. Thus, to make the corresponding 
heterogeneous, distributed, and dynamic discovery-based environment work in practice, 
interoperability is key and standards are a must. A whole stack of standards has already 
been proposed (e.g. WSDL [11], SOAP [5], UDDI [3], and WS-Security [23]) and others 
will follow (see for example the roadmaps in [10] and [21]). Based on these standards a 
set of interoperability profiles will be published that describe artefacts from collections 



 
 
 
 
 
 

of Web services standards and its recommended collective usage to ensure interoperabil-
ity across platforms and languages (e.g. [1]). We describe the overall Web service envi-
ronment and underlying basic concepts in section 2. 
 
Grid technology [15] is about to evolve towards a “virtualisation layer” for hosting Web 
services ([16], [42]). Corresponding environments are under implementation, for exam-
ple for Java [39].  This will enable what has been called recently “utility computing” or 
“on demand computing” [20]. Section 3 sketches this development.  
 
Applications in this environment will consist of two parts, namely collections of individ-
ual and autonomic Web services (i.e. components) and aggregation specifications de-
fined as business processes [12]. This will make the two-level programming model (e.g. 
[44], [29]) pervasive and will even allow involving human beings in applications. The 
corresponding application structure is outlined in section 4. 
 
Finally, Web services also need to be aggregated in a less structured manner: Corre-
sponding aggregation models for Web services appear (e.g. [8], [31], [41]) that allow 
building unstructured collections of Web services. Section 5 sketches the basics. 
 
We conclude in chapter 6 and present the draft of a high-level middleware stack that 
supports the execution of this kind of applications.  
 
2  Virtual Components 
 
Web service technology makes functions available independent of many aspects of the 
proper implementation of the Web Service:  A requestor has no need to know the pro-
gramming model chosen to implement a Web service, i.e. whether the Web service is 
implemented in procedural or object oriented manner, for example. The programming 
language used to implement a Web service is completely irrelevant for a requestor. It 
doesn’t matter whether the Web service is based on functions of a monolithic application 
system or whether it is build as a component, and if it is a component what the underly-
ing component model is (e.g. J2EE, .NET). Any specific formats and protocols assumed 
by the Web service for direct communication is irrelevant for a requestor, i.e. it is hidden 
whether the implementation of the Web service expects ASCII files or Java objects, or 
whether it is invoked via a local call, an RPC or via a message queue, for example.  
 
The concept of a WSDL port type is used to define what functions a Web service pro-
vides, i.e. a port type specifies the interface of a Web service. Different WSDL bindings 
can be used to specify how these functions can be accessed via different formats and 
protocols, e.g. via SOAP over JMS, or via Java objects via method call. And a WSDL 
port defines an actual endpoint where these functions can be accessed according to a 
certain format and protocol, e.g. a queue name, or a class name and JNDI name. In this 
sense, a Web service is a virtual component that can be implemented in many different 
ways, e.g. by real components or by any other piece of executable code (see Figure 1). 
Especially, a Web service is not at all coupled with any kind of Web technology; be-
cause of this we will often simply use the term service instead of the Web service and we 
will use both terms interchangeably.  
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Figure 1 - Web Service as Virtual Component 

 
2.1 Invocation 
 
A user of a service should not be aware of the concrete implementation model chosen to 
realize the service: Whether the service is implemented as an EJB or a stored procedure 
or something else should be hidden as far as possible from the user. Thus, the user 
should be given a consistent “programming model” when dealing with services of differ-
ent kinds. For this purpose, the environment of the user should provide features to deal 
with services of any kind in a manner specific to the environment and that appears seam-
less to the user.  
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Figure 2 - Accessing Web Services 



 
 
 
 
 
 

 
For example, a J2EE programmer should deal with Web services in a J2EE “style”. In 
[26] we present a J2EE building block called WSIF (Web Service Invocation Framework 
– represented by the annular area in Figure 2) that exactly facilitates the latter; other 
environments may provide similar building blocks. In Figure 2, the client accesses a 
Web service ( ) in the programming model of its hosting environment (e.g. in Java 
based on WSIF); it doesn’t even know that such different executables like a program in a 
TP monitor ( ), a table via an SQL statement ( ), or an ERP system ( ) may actually 
implement the Web service.  
 
2.2 Lifecycle 
 
A service can be statefull or stateless. For our discussion it is not important whether state 
is introduced via persistent instances or via session-like interactions. It is more important 
for our discussion whether or not the fact that a service is statefull or not is hidden from 
or visible to its clients: This has impact on the client programming model, i.e. whether a 
client has to explicitly manage the lifecycle of a service or not. When services are dy-
namically discovered, having to distinguish between statefull and stateless services 
causes complexity. Today, as a matter of fact, different application areas follow one 
approach or the other: In an OGSA Grid environment [42] statefull services are explic-
itly dealt with, while a BPEL business process environment [12] implicitly manages the 
statefullness of a service on behalf of a client.  
 
At the level of details sufficient for us, OGSA uses an explicit factory-based approach to 
deal with the lifecycle of a Web service: A client uses a factory to create “an instance” of 
a particular kind of service. The client can then explicitly manage the destruction of such 
an instance, or it can be left to the Grid environment. In the latter case, a client registers 
its interest in the instance for a particular period of time (which can be extended). When 
no client is any longer interested in a given instance it can be destructed. 
 
BPEL facilitates the implicit management of the lifecycle of an instance of a service via 
correlation identifiers embedded in messages: Application data exchanged with a service 
is assumed to carry enough information to identify a particular instance of a service. The 
state of a service is described via a process specification in BPEL. Depending on the 
actual state a service is in an incoming message results either in the automatic creation of 
an instance of a service, or the message is automatically routed to the appropriate exist-
ing instance. Finally, instances are automatically destructed when they reach their “final 
state”.  
 
2.3 Policies 
 
Services need to describe their capabilities and requirements to their environment and 
potential users. A collection of capabilities and requirements is referred to as a policy 
[24]. A policy may express such diverse characteristics as transactionality, security, 
response time, pricing, etc. For example, a policy of a service may specify that all inter-
actions must be invoked under transaction protection, that incoming messages have to be 
encrypted, that outgoing messages will be signed, that responses may only be accepted 



 
 
 
 
 
 

within 5 seconds, and that certain operations are subject to a fee to be paid via credit card 
by the invoker.  
 
Since policies might get quite complex they should be reusable. For this purpose, a pol-
icy can be specified as a separate document. Such a document can be associated with 
(constituents of) a Web service via an attachment [25]. Basically, an attachment consists 
of both, a policy and a subject the policy applies to (“resource”). Such subjects include 
port types, operations, messages, and also endpoints, i.e. individual ports or Web ser-
vices, respectively. Attachments can be specified as follows (see Figure 3):  
 

• Policies can be referenced out of the WSDL definitions of subjects. This 
method is suited to attach policies at the time when Web service resources are 
specified. 

• Web services resources that are already deployed can be associated with poli-
cies by simply pointing to these resources and to the policies to be applied. 
Pointing to resources can be done based on domain expressions that describe 
the subjects and that have to be resolved in order to find the resources charac-
terized by the policies. This method is especially suited to attach policies to ex-
isting resources.  

• Finally, a policy can be registered itself in UDDI (as tModels). It can be associ-
ated with a UDDI business service (as key in a category bag).  
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Figure 3 - Attaching Policies to Services 

 
Service level agreements [34] can make use of policies and policy attachments. They do 
specify characteristics bilaterally agreed to in advance between the provider of a Web 
service and particular users. A service level agreement specifies aspects like committed 



 
 
 
 
 
 

quality of services (like availability and average response time), payment methods for 
calling on a Web service, fees to be paid when service levels are not met etc. 
 
2.4 Service Bus 
 
Web service technology enables a new kind of architecture for composing applications 
referred to as service oriented architecture (SOA – see [7]). In SOA, services are regis-
tered in a service directory (e.g. in UDDI). Requestors find services they are interested in 
by enquiring service directories. The information they retrieve from a directory suffices 
to bind to a service and use it (see Figure 4). 
 
When a service provider publishes a service in a service directory he specifies technical 
information about the service as well as business relevant information. Technical infor-
mation about a service includes its interfaces, supported bindings, and endpoint informa-
tion (e.g. the corresponding WSDL definitions). Business relevant information about a 
service falls into two categories: One category contains information about the suitability 
of a service from a functional perspective; the other category contains information about 
the suitability of a service from an operational perspective. The first category helps to 
understand whether a service is instrumental in achieving a business goal, e.g. buying a 
certain kind of sheet metal that is available within a certain period of time at a given 
price. Information provided are semantic descriptions about the kind of service facili-
tated by each of its interfaces, information about the service provider itself etc. The sec-
ond category helps to understand whether a service satisfies the business policies of the 
requestor, e.g. all data are exchanged in an encrypted manner and are deleted once the 
trade is settled, messages are exchanged via reliable protocols, and payment is can be 
done once a month collectively for all orders. Information provided in this category 
includes payment methods, charging models, quality of services supported. The policy 
mechanism is expected to be used to describe this kind of information. Finally, all this 
information should be understandable by large communities, both, people as well as 
programs; it is expected that ontologies will play a major role in this area [14]. 
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Figure 4- Service Oriented Architecture 

 



 
 
 
 
 
 

Underlying SOA, there are really two distinguishing features: First, a requestor finds 
suitable services mainly based on queries in business terms (in contrast to technical 
terms). Second, the infrastructure hides as many technicalities as possible from a re-
questor. For example, a requestor specifies that he wants to analyze a gene based on a 
particular algorithm, and that he is wants to exchange all of the corresponding data en-
crypted. The infrastructure should find a service provider that matches the requestor’s 
criteria and handle the corresponding request automatically on behalf of the requestor.  
 
In Figure 5, this infrastructure is called service bus. The service bus receives the request 
and peals off the declarative description of the service required ( ). The description 
contains both, the business goals as well as the business policies of the requestor, and 
this description is used to derive the set of matching services offered by various service 
providers SPj ( ). From a requestor’s perspective, all qualified services are equivalent; 
i.e. the set of qualified services represent the virtual service ( ) described by the re-
questor by his request. If more than one service has qualified the service bus will decide 
on one of them ( ); this decision will be based on overall environmental properties like 
actual workload at the service provider side, average response time etc (e.g. measured or 
based on service level agreements with the service providers). Finally ( ), the service 
bus will bind to the service selected, pass the request message proper to it, and deliver 
the response to the requestor. Note that during step  the invocation component 
sketched in section 2.1 is involved.  
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Figure 5 - Service Bus for Virtualizing Services 



 
 
 
 
 
 

 
2.5 A Clarification  
 
It should be clear until now that the sometimes-heard belief, Web service technology is 
all about SOAP, is erroneous. As shown above, Web Service technology is about SOA, a 
certain architectural style, which is far more than just SOAP: SOAP is primarily one 
particular wire-format used to exchange data as well as a set of conventions about how 
to appropriately process SOAP messages. The acronyms are close, but the goals are at 
different scale.  
 
2.6 Sample Work to Be Done 
 
Today, the component model underlying Web services is relatively simple. To allow 
more complex usage patterns ([19], [40]) work must be undertaken to define a more 
complex component model for Web services. For example, what mechanisms for com-
ponent aggregation are required or desirable (see also section 5)? What are their advan-
tages or disadvantages in a Web service world? 
 
According to SOA Web services can be dynamically discovered and used. Today, the 
difference between statefull and stateless Web services is visible. Can and should the 
environment hide the difference and allow for a single client programming model? What 
is the impact of this programming model on the service bus? 
 
Policies play a key role in the discovery of Web services. Often, policies are added to a 
Web service in an incremental manner. What are efficient algorithms to combine multi-
ple policies into a single policy that describes a service or a request? A service as well as 
a request is decorated by a policy; how is matchmaking of policies done efficiently?  
 
3  Virtual Operational Environments 
 
The service bus introduced above virtualizes services: As long as a service qualifies 
under a request the service bus has the liberty to target the request to it. In doing so, the 
service bus can optimise the execution of a single request having the optimal exploita-
tion of the overall environment in mind. It will use algorithms and mechanisms from 
scheduling, workload management etc that apply to the heterogeneous and distributed 
environment of Web services.  
 
3.1 Grid Services 
 
Middleware for scientific computing with similar goals has already been developed in 
the Grid computing area [15]. It thus seems only natural to bring the area of Grid com-
puting and Web services together: [16] outlines an architecture for such a combined 
environment called Open Grid Services Architecture (OGSA). The most fundamental 
aspects of the special kind of Web services, called Grid Services that are hosted in such a 
combined environment are under specification (see [42]). 
 



 
 
 
 
 
 

In order to become a Grid services, a Web service has to support a set of pre-defined 
interfaces and has to comply with some conventions. The interfaces to be supported 
facilitate the discovery, creation, and lifetime management of services; they further fa-
cilitate a notification mechanism to especially enable the manageability of services. The 
conventions deal primarily with naming services. Based on these interfaces and conven-
tions a standard semantics for interacting with a Grid service is defined: How services 
are created, how their lifetime is determined, how to invoke functions of a service etc. 
 
It is expected that many different environments, especially application server environ-
ments like J2EE [22] or .NET [2] will evolve to support Grid services. This would mean 
that the application server might provide a special container hosting these services or 
that existing containers are modified to support the semantics of these services (Grid 
service container). [39] describes the design of such a container based on both, native 
Java as well as on J2EE.   
 
Such a (new or modified) container specifies the interface defining the interactions be-
tween the container and an implementation of a Grid service such that the implemented 
service appears to a requestor as a Grid service. As of today (year end 2002), this inter-
face is not standardized; a corresponding standard would allow creating Grid services 
that are portable at least between homogeneous environments (e.g. J2EE compliant ap-
plication servers). Nevertheless, requestors that use a Grid service based on the OGSA 
standard specified in [42] would be independent of the actual environment that hosts the 
Grid service used.  
 
3.2 Grid Services Environment Stack 
 
Based on [38], Figure 6 depicts the stack building the overall environment for applica-
tions of Grid services. At the bottom, it shows a Grid service container based on an envi-
ronment like an application server; the container provides the functions discussed before. 
But the overall environment might consist of many different Grid service containers that 
are hosted on different autonomous and heterogeneous application servers. Thus, cluster-
ing capabilities are needed to “federate” the different Grid service containers resulting in 
a virtual environment for scalability and resource sharing. Also, such a virtual environ-
ment has to support distributed and heterogeneous problem determination and logging, 
the association of policies with Grid services as a base for request scheduling etc. The 
corresponding functions are referred to a meta-operating system services.  
 
Often, collections of Grid services are needed to perform more complex functions that 
are not offered by individual services (see also section 5). Capabilities for managing 
such collections of services as well as making them jointly accessible are shown as a 
separate building block referred to as domain services. For example, domain services 
allow that individual instances of a particular Grid service type may join or leave a col-
lection. Domain services also include functions for provisioning such collections to 
individual requestors.  
 
At the top layer functions are shown that represent various autonomic services of the 
Grid: For example, Grid-wide workload management that enable a broad range of 



 
 
 
 
 
 

mechanisms for scheduling requests in the Grid reaching from simple round-robin 
schedulers to policy-based meta-schedulers in hierarchical Grid topologies (see [4], [37]) 
enhancing overall availability and scalability within the Grid. Also, functions enabling 
utility computing (see next section) are at this layer. 
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Figure 6 - The Grid Services Stack 

 
3.3. On Demand Computing 
 
Finally, such an environment will enable a new computing model called on-demand 
computing [20]. In a nutshell, this term refers to the ubiquitous availability of compute 
resources whenever needed and wherever needed. This bares the potential to turn com-
puting into a public utility like water, power, gas, and telephone connections – which is 
why this model is also referred to as utility computing.  
 
An important step on this path is represented by the concept of a hosted e-utility. A 
hosted e-utility is a collection of application-related services (both, hardware as well as 
all required software) that is made available by a service provider to a requestor on de-
mand based on particular service level agreements for a certain fee. For example, a re-
questor wants to analyze new genomic data and needs for this purpose a set of certain 
algorithms, large amount of temporary storage, a set of servers to provide the corre-
sponding compute power, as well a high-bandwidth connections to the Internet for ac-
cess to public genomic data. A service provider can provide all of this as a collection of 
Grid services.  
 



 
 
 
 
 
 

For this purpose, the service provider will make use of the Grid services stack sketched 
in the section before. For example, the required collection of services will be managed 
by the collection services. The collection will be assembled based on business rules and 
business processes depending on the ordered quality of services and negotiated service 
level agreements; for this purpose, the eUtility service of the autonomic layer can exploit 
workflow technology. Provisioning services are used to reserve the necessary resources 
to meet the service level agreement for the time period ordered. Note the relation be-
tween hosted e-utilities and application service providers (ASPs).  
 
3.4 Sample Work to Be Done 
 
It is obvious that there is a lot of work to be done to establish Grid computing and further 
on-demand computing as a broadly accepted model in practice. The spectrum of work 
reaches from low level technical work like specifying the agreed upon interfaces be-
tween the Grid service container and Grid service implementations such that these im-
plementations become portable, over theoretical work on meta-schedulers, to business-
related work on payment models, for example.  
 
Finally, Web services and Grid services will further have to converge: It has to be inves-
tigated which properties currently specified as characteristics of Grid services do make 
sense in the more broader context of Web services, and which properties do only make 
sense in the more specific context of on-demand computing – if there are any such prop-
erties at all.  
 
Note: We do not distinguish between Grid services and Web services in what follows 
and will often simply talk about services.  
 
4 Application Structure 
 
Services are either fine grained or coarse grained. From a requestor’s perspective, a fine 
grained service achieves a business goal based on a single interaction, while a coarse 
grained service typically requires multiple interactions to achieve a business goal. Be-
cause a single interaction with a fine grained service suffices, a fine grained service 
typically does not reveal any of its inner structure, i.e. it is opaque hiding its implementa-
tion details. In contrast to this, a coarse grained service does reveal implementation de-
tails, especially the set of interactions required as well as their order, i.e. it is transparent 
making some of its inner structure visible to a requestor. The implementation details 
revealed by a coarse grained service describe its potential message exchange with the 
outside world, i.e. business rules that specify in which order and under which conditions 
which messages are sent to or expected from the requestor and perhaps other third party 
Web services. These details are important because it allows a requestor to determine 
whether he can interact with a particular service at all, for example.  
 
4.1 Two-Level Programming Paradigm 
 
In a Web services world actual messages are sent to ports via their corresponding opera-
tions. Thus, at the type level a potential message exchange can be specified by defining 



 
 
 
 
 
 

the potential order in which operations of port types are used and under which condi-
tions. As depicted in Figure 7 this is the same as specifying a business process or a work-
flow, respectively, the activities of which are realized by operations of port types (see 
[30]). Especially, a coarse grained service appears to be composed of the corresponding 
services, and consequently coarse grained services are also referred to as composite 
services. Vice versa, fine grained services are also referred to as elemental services. 
 
In [12], a language called Business Process Execution Language for Web Services 
(BPEL for short) has been defined to specify how to compose a service from other ser-
vices based on business process models (see [33] for a quick overview on BPEL). First, 
BPEL requires the specification of all of the port types a composite service offers to the 
outside world and in turn all port types from the outside world, which it expects to use. 
Second, it requires specifying the potential ordering in which operations of these port 
types may be used or have to be used, respectively, and this ordering can be specified 
dependent on business rules. I.e. a composite service is specified by sets of port types 
and a business process model exploiting operation of these port types.  
 
This introduces the paradigm of two-level programming [44] to Web services: Pro-
gramming in the small for implementing the elemental services used by a composite 
service, and programming in the large for specifying the composite service itself. Pro-
gramming in the small, i.e. the implementation of elemental services, is done based on 
usual programming languages (e.g. Java, C#), and based on known component technolo-
gies and application server environments (e.g. J2EE, .NET). The corresponding compo-
nents are hosted and rendered by the environment as Web services, i.e. the elemental 
services. Programming in the large is done based on a business process language (e.g. 
BPEL) hosted and run by a workflow system (see [29]). The corresponding business 
process is rendered again as a Web service resulting in a composite service.   
 
In a nutshell, the set of port types offered by a composite service to the outside world 
represents the interface of this service. This notion of a service as an aggregate goes 
beyond WSDL, but offering just a single port type corresponds to the known notion of a 
service in today’s WSDL. In section 5 we discuss other aggregation models for Web 
service.  
 
BPEL can also be seen as a language for implementing a service based on other services. 
In this case, the Web service to be implemented is a composite service that offers a sin-
gle port type to the outside world. If the services used to implement the composite ser-
vice are publicly available the composite service is even portable to other environments 
that support BPEL, i.e. it will be able to be executed without any further actions; other-
wise, the services used must be made available via appropriate deployment (see next 
section).   
 
4.2 Reuse  
 
The two-level programming paradigm introduces reuse at both levels: At the component 
level, i.e. elemental service level, and at the business process model level, i.e. composite 
service level. In practice, a vast number of isolated component functionalities does al-



 
 
 
 
 
 

ready exist in an enterprise, e.g. in form of purchased standard applications or home 
grown special applications. Typically, it is the knowledge of how to integrate these com-
ponent functionalities into a business process that solves a (new) business problem. As a 
consequence, to become an artefact of reusability a business process model has to have 
the ability to be easily linked to the component functionalities available at an individual 
enterprise; a business process model with this property is sometimes called a solution 
template – or solution for short [32].   
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Figure 7 – Two-Level Application Structure 

 
Linking a business process model to components is done in a step called deployment (see 
[22] for the original concept in J2EE, or [31] for a specialized concept called “locators”). 
During deployment for each port type referred to within the business process model it 
must be specified how it is bound to a corresponding port when an instance of the busi-
ness process model is executed and makes use of an operation of a certain port type. 
Binding a port type to a port can be static or dynamic. Static binding assigns a fixed port 
to a port type. Dynamic binding assigns a mechanism to a port type that defines how a 
corresponding port is derived when needed at runtime. For example, one mechanism can 
be to assign a UDDI query to a port type that is to be evaluated at run time to determine 
a matching port. Another mechanism can be to expect a reference to the actual port to be 
used as a field in an incoming message (e.g. via service references and partner assign-
ments in BPEL). The collection of deployment specifications associated with a business 
process model is called its deployment descriptor. Thus, a deployment descriptor links a 
solution template (i.e. a business process model) to existing ports, i.e. its turns a solution 
template into an executable solution (or application, respectively – see Figure 7). Those 



 
 
 
 
 
 

ports might be both, elemental as well other composite services; the latter shows that the 
resulting programming model is recursive.   
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Figure 8 - Involving People in Business Processes 

 
4.3 Involving People 
 
Business processes may involve human beings [30]: A long running business process 
may be monitored by human beings interested in the actual state of the business process. 
Instances of business processes may be managed by human beings, e.g. an instance 
might be suspended and resumed later on. And a business process may involve people 
directly by creating work requests for certain people; these work requests are bundled 
into worklists for each person involved. A worklist may be perceived as a launch pad for 
tools supporting people in performing work requests: By selecting an item from a work-
list the user initiates that the environment invokes the associated tool.  
 
Typically, such an involvement of human beings in business processes is done today via 
portal technology. As shown in Figure 8, a portal may contain portlets that show a work-
list of the person logged-on to the portal, and functions for the management and monitor-
ing of business process instances. The tool to be launched when the person selects a 
work request from his worklist can be a Web service interacting with the person and that 
produces a user interface rendered within the portal (see [27] for the specification about 
how Web services can interact with portals).  
 
For example, a person starts a business process for arranging a business trip based on 
instance management functionality made available in his portal. The corresponding 
business process first creates a work request for providing input about the trip to be ar-
ranged. This work request appears on the worklist of the person. When selecting the 
work request from the worklist the user interface appears that allows to key in the re-



 
 
 
 
 
 

quired data. Once this is done, the person can monitor the progress of his travel request 
via the monitoring functionality made available in the portal. 
 
4.4 Sample Work to Be Done 
 
Considering user-facing actions in the business process based two-level programming 
paradigm as well as the corresponding middleware aspects is something that has to be 
done in more detail. For example, how is a series of interactions with one and the same 
end user (i.e. a “dialog”) reflected best in a business process? How is this related to the 
model-view-controller paradigm (e.g. [36]) that is typically used in environments that 
are not workflow-based? What is the relation between workflow-based implementations 
of dialogs and other implementation techniques for end user interactions (e.g. Struts or 
Java Server Faces [35])? 
 
One aspect of BPEL is to put constraints on the possible usage of operations of (collec-
tions of) port types; this specifies a certain kind of semantics for the corresponding port 
types. How does this contribute to shape “the semantic Web”? Another aspect of BPEL 
is that of an executable language: How can BPEL support Grid applications, i.e. what 
modifications or extensions of BPEL are needed? For example, how can a Grid sched-
uler exploit workflow functionality, especially based on BPEL?  
 
The concept of a solution template is worth to be considered further: Not only complete 
business process models are “templates” for application functionality but also “appropri-
ate” fragments of a business process model. What properties characterize reusable frag-
ments?  How can fragments be expanded to become complete solutions? How is the 
semantics of a fragment changed when it is expanded? 
 
5 Aggregation 
 
The model of building a composite service as introduced in section 4.1 is one example of 
an aggregation model for Web services. In this model aggregation is done at the port 
type level by specifying both, the port types offered as well as required by the aggregate. 
Furthermore, the aggregation is very much structured and constrained in its behaviour by 
the associated business process model, i.e. it is “choreography”-centric: It prescribes the 
potential order in which the operations of the aggregated port types are to be used. And it 
is “pro-active” by defining an execution model that actually drives the usage of the ag-
gregated port types. On the other hand, it is non-recursive in the sense that defining new 
port types based on its aggregated port types is not its focus.  
 
Other aggregation models for Web services are possible:  
 

• Aggregation models at the port type level focussed on the recursive definition 
of new port types (section 5.1). 

• Aggregation models at the instance level (i.e. port level or service level, respec-
tively) focused on (statically or dynamically) collecting services of certain port 
types without any assumption about structural relations between the services 
(section 5.2). 



 
 
 
 
 
 

• Aggregation models at the instance level focussed on reaching outcome agree-
ment between services that cooperate in a not explicitly prescribed manner (sec-
tion 5.3). 

 
5.1 Global Models 
 
The definition of a recursive aggregation model (called global model) for specifying 
collections of new port types is included in [31] (see Figure 9). This model defines the 
notion of a service provider type as a set port types (e.g. SPa). The only structural rela-
tion between service provider types is that they make use of each other’s services. The 
relation between service providers and the aggregate itself is that the aggregate’s inter-
face is built from the service provider types’ interfaces.   
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Figure 9 - Aggregation via Global Models 

 
Operations of port types of different service provider types can be connected via a di-
rected plug link. A plug link defines a client-server relationship between operations 
specifying who the initiator is and who the follower within an interaction is. For exam-
ple, the out-operation op3 of port type pT2 of service provider SPb is the source of a mes-
sage send to the in-operation op1 of port type pT1 of service provider SPa that consumes 
this message. It is not required that all operations are source or target of a plug link, i.e. a 
service provider might offer operations that are not used by other service providers of the 
aggregate. Furthermore, a plug link allows defining message transformations to handle 



 
 
 
 
 
 

cases where the signatures of the linked operations do not match; for example, such a 
situation appears quite often in EAI environments.  
 
The (new) interface of the aggregate is defined by exporting operations of constituent 
port types that are not used within a plug link. The semantics of exporting an operation is 
that the implementation of an operation from the interface of the aggregate is delegated 
to the operation of a port type of a service provider. For example, the in-operation of port 
type pT in Figure 9 is in fact the exported operation op4 of port type pT3 of service pro-
vider SPc, i.e. if a requestor uses the in-operation of the aggregate the environment host-
ing the aggregate will forward the incoming message to op4 of pT3. The collection of 
service provider types, plug links and exports needed to define new port types make up a 
global model. 
 
5.2 Service Domains 
 
In some application scenarios, a requestor needs a collection of related services that he 
will use in a non-predefined manner. Properties beyond the signature level of a concrete 
service are irrelevant to a requestor, i.e. individual ports providing the same service are 
indistinguishable from a requestor’s point of view. [41] specifies a complete environ-
ment for such aggregations; the corresponding aggregation model is referred to as ser-
vice domain. For conciseness reasons, we will take the liberty here to use the same name 
but describe a variant of this aggregation model.  
 
Basically, a service domain is a set of ports implementing a predefined set of port types. 
In general, for each particular port type associated with a service domain there is more 
than one port implementing this port type. A service domain aggregates these ports by 
providing for each of its port types a port that functions as a proxy for the set of ports 
implementing the same port type. When a requestor sends a message to this proxy the 
environment will select one implementing port and dispatch the message to it.  
 
An extension of this base model introduces more dynamics: Providers can register and 
unregister ports with a service domain. Registration includes specification of the service 
levels (e.g. throughput, average response time) for the offered operations. Requestors are 
using services of a service domain based on formerly established service level agree-
ments. Consequently, the environment will select implementing ports based on matching 
service levels and optimizing the utilization of the overall environment.  
 
5.3 Coordination 
 
Often, the final outcome of the usage of some services is dependent on the final outcome 
of the usage of some other services. As a result, an aggregation model is needed that 
allows dynamically creating temporary collections of services the joint outcome of their 
usage is determined once the period of usage of the services within the collection is over. 
The determination and dissemination of the joint outcome is based on a collection-
specific set of protocols supported by the participating services, i.e. member of the col-
lection.  
 



 
 
 
 
 
 

Example 1: Consider a sealed-bid auction for divisible goods. Sellers inform the auc-
tioneer about their goods to sell and buyers submit to the auctioneer the maximum price 
they are willingly to pay for a certain quantity of the good. Once the bidding period is 
over the auctioneer uses a clearing algorithm to determine the winners as well as the 
actual price each individual winner has to pay for his quantity. Finally, the auctioneer 
informs the seller about the winners as well as the corresponding prices and quantities, 
and he notifies winners and losers accordingly. Technically, the auctioneer, the seller, 
and the buyers are represented by appropriate Web services. When the seller offers his 
good he opens up a temporary collection of Web services that incrementally consists of 
his own service, the auctioneer’s service, as well as the services of all bidders. The auc-
tioneer, the bidders and the seller follow a certain protocol: First, the seller begins the 
trade by informing the auctioneer about the good to sell, then, the auctioneer is sending 
out request for bids, next, the bidders submit their bids to the auctioneer, and finally the 
seller notifies the seller, the winners, and the losers. After that, the temporary collection 
of services ceases to exist. 
 
Example 2: Consider a distributed transaction that is managed via a two-phase-commit 
protocol ([18], [43]). An application begins a transaction with a transaction manager and 
issues manipulation requests to various resource managers. When the application has 
finished all of its manipulations it will closes the transaction by issuing a commit request 
to the transaction manager. The well-known two-phase commit protocol is then run 
amongst the players on the scene to determine the joint outcome of the transaction. 
Again, the application, the transaction manager, as well as the resources can be Web 
services. In the course of the transaction these services are dynamically aggregated into a 
temporary collection of services managed by a certain protocol set in terms of outcome 
agreement.  
 
The corresponding abstraction at the Web service level – called Web Services Coordina-
tion (or WS-C for short) – has been specified in [8] (see [17] for a quick overview on 
WS-C): A distributed activity is a unit of computation that consists of a set of different 
services, and that requires to jointly agree on the outcome of the unit of computation 
between the constituting services. Agreement is reached base on coordination protocols. 
A coordination protocol is a collection of messages together with a prescription about 
how these messages are to be exchanged in order to reach agreement (e.g. the protocol 
between a bidder and an auctioneer, or a transaction manager and a resource manager). 
A coordination protocol is represented by a collection of port types, where each port type 
is the result of a logical grouping of messages appropriate for a class of participants in 
the protocol (e.g. the port types representing a bidder or an auctioneer, respectively). 
Coordination protocols are grouped into coordination types. A coordination type is a set 
of coordination protocols needed to reach agreement between the different kinds of ser-
vices of a certain type of distributed activity (e.g. the protocols between seller and auc-
tioneer, and bidder and auctioneer need to determine the outcome of a sealed-bid auc-
tion).  
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Figure 10 - Aggregation via Coordination 

 
A coordinator provides services to create a distributed activity and to register for par-
ticipation in a distributed activity (see Figure 10). An activity is created by specifying 
the coordination type used to agree on the outcome between the various participants. 
After creation, each activity has a unique activity identity. A service registers with an 
activity as participant by specifying the coordination protocol(s) it will honour. During 
registration, the participant and the coordinator exchange references to the ports that 
provide the operations allowing to mutually receiving the messages of the protocol(s). At 
the end of the activity the coordinator will communicate with each participant according 
to its registered protocol(s) to determine the agreed outcome of the activity.  
 
WS-C specifies the framework sketched above but does not specify any coordination 
type. An accompanying specification called Web Services Transaction [9] (or WS-Tx for 
short) specifies coordination types for two major application areas: For “traditional” 
short-running distributed transactions, and for the extended transaction model for busi-
ness processes specified in BPEL that allows to manage long-running units of work 
based on compensation actions (an extension of the model introduced in [28]).    
 
5.4 Sample Work to Be Done 
 
The aggregation models described in this section are not meant to be exhaustive. What 
other aggregation models are possible, and what are their application areas? How can the 
presented aggregation models be combined to become applicable in new areas (e.g. 
distributed activities across service domains)? Are there some sorts of “basic” aggrega-
tion models that can be used to describe other aggregation models? 
 



 
 
 
 
 
 

6  Summary 
 
In this paper we have demonstrated that Web services are the base for a new era of dis-
tributed computing. Web services are virtual components hiding from their users idio-
syncrasies of the concrete (application server) technology chosen to implement the Web 
service. Especially, users can easily mix and match functions from heterogeneous envi-
ronments into a single application if those functions are rendered as Web services. Based 
on a service-oriented architecture a user does not even have to care about a particular 
Web service he is communicating with because the underlying infrastructure, i.e. the 
service bus, will make an appropriate choice on behalf of the user. This choice is based 
on policies of both, the user and the Web services qualifying under the user’s functional 
request, and the choice is also influenced by service level agreements and demand for an 
optimal utilization of the overall environment. We have shown that Grid computing 
technology and Web service technology are about to converge to provide these features 
and more, enabling utility computing and on-demand computing. Aggregations of Web 
services support a broad spectrum of requirements reaching from recursive component 
construction over advanced provisioning of groups of services to transaction manage-
ment. Application construction and execution will be based on business process technol-
ogy composing Web services into higher-level business functionality based on a two-
level programming paradigm. Involvement of human beings in these applications is 
achieved by appropriate exploitation of portal technology. Figure 11 summarizes the 
corresponding middleware stack graphically.  
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Figure 11 - Middleware Stack For Services-Oriented Applications 

 
For the subject areas discussed in this paper we listed some selective research items. 
Many aspects that are of high importance for this kind of an environment like systems 
management, tooling for application construction and monitoring etc have not even been 
touched in this paper. Security aspects are utmost importance from a business perspec-
tive [6], but have been left out too. Payment methods, contracting etc appropriate in a 
Web service and on-demand environment are to be investigated, especially in situations 
in which services are recursively aggregated. 
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