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Abstract: Due to the ever increasing impacts of globalization, people will/have to
work on data which is distributed all around the world [LKKt97]. Query processing
on the corresponding data sources is a key data processing task in most distributed
applications and rather difficult to implement for interactive usage in an Internet scale
environment. ObjectGlobe is a data integration system which enables interactive query
processing in such an environment. The basic architecture of the ObjectGlobe system
and its integrated quality of service (QoS) management component were developed in
this dissertation and briefly summarized in this paper. The dissertation [Bra02] itself
can be downloaded at
http://elib.ub.uni-passau.de/opus/volltexte/2002/27.
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1 Introduction

The proceeding globalization we encounter today results in a demand for global data pro-
cessing. The Internet as the largest global computer network is the most prominent enabler
for global data processing. Query processing is one task in this field and it plays an im-
portant role for many application domains, e.g., applications which depend on some kind
of decision making. In this respect, the Internet provides access to a large number of in-
teresting data sources like hotel listings, flight schedules, stock rates, earth observation
images or genome databases. Data integration or mediator systems were developed to ac-
cess these distributed and heterogeneous data sources on the Internet. First, these systems
were closed systems with a predetermined, fixed set of data sources and a centralized ar-
chitecture with respect to the execution of mediator related tasks. More recently, flexible,
distributed data integration systems were conceived, e.g., Amos II [JKR99] or our Ob-
jectGlobe system [BKKT01]. In the following paragraphs, we describe the ObjectGlobe
architecture which represents an open and distributed data integration system.

Within an ObjectGlobe federation three kinds of providers that can participate in a corre-
sponding information economy are distinguished: data providers which supply data, func-
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Figure 1: An Example Query Execution in an ObjectGlobe Federation.

tion providers which offer operators and functions to process data, and cycle providers
which are contracted to execute operators and functions. In ObjectGlobe, the services of
these kinds of providers can be combined in an almost orthogonal way; exceptions just
arise for security, privacy and capacity reasons. Therefore, ObjectGlobe enables an open
and distributed query processing services market.

For example, suppose that an ObjectGlobe user is searching for a villa in the Mediterranean
area with requirements regarding the maximum distance to the next airport and the amount
of building area. The notional SQL-query for this application computes a join between real
estate information and data about airports. The join predicate uses a user-defined, external
function which computes the length of the bee-line between two locations. The query also
uses an external operator (named scale) for scaling the images of the estate offers into a
handy size. The meaning of the attributes of our real estate relation should be obvious.

select e.Price, e.Location.City,
scale(e.Image,0.3), a.Name
from Estate e, Airports a
where e.building-area > 200 and
geoDistance (e.Location,a.Location) < 10
and e.Location.region = ’'Mediterranean’;

In an ObjectGlobe federation, external data sets are incorporated by so-called wrappers
and internally represented in a nested relational format. Hence, the data of each Euro-
pean realtor could be incorporated as a partition of such a relation, here named Estate.
An example query execution in an ObjectGlobe federation is shown in Figure 1. The data



for airports is contributed by a data provider A and for real estate by the data providers
R1,..., R113, respectively. The providers for real estate information represent combined
data/cycle providers, executing the external function scale which is provided by the func-
tion provider F1. Additionally, two pure cycle providers execute the union operation on
the real estate partitions and the join operation between real estate and airports informa-
tion. Pure cycle providers play an important role when data providers cannot or are not
willing to execute any query operators except the scan operators or when operations can
be placed at cycle providers in a way which reduces communication costs.

Obviously, the effects of query executions in such an environment can hardly be overseen
by a user. Therefore, a quality of service management component of ObjectGlobe supports
user defined quality constraints [BKKO03]. [Wei99] gives a good motivation for the need
to integrate the handling of service quality guarantees in information systems. One aspect
of QoS in a data integration system is certainly data quality. This topic has already been
tackled in the literature, for example, in [NLF99].

2 The Quality of Service Model

As we have seen in the introduction, in an information economy a user should be able to
constrain the relationship between the qualities of the result and the execution itself and
the costs for the services of providers. For example, users would then be able to express
that they are willing to pay more for the execution of a query, if the query finishes earlier.

This means, that analogously to cost models in traditional database systems, we need a
model for our quality constraints in order to describe and assess the quality of queries,
query evaluation plans and query executions.

Therefore, we need a set of QoS parameters which can be used for declaratively specifying
QoS constraints for a query execution. In the query processing context QoS parameters can
belong to three different dimensions: the result quality of the query, the duration/timeliness
of the query execution and its monetary cost.

Parameters for the Query Result Quality:

e the oldest time stamp of the last update for a partition p of of a used relation .S or its
maximum staleness factor.

e the share of the used partitions in respect to the whole data of a relation S. This
parameter is also called completeness.

e a lower bound for the result cardinality. This parameter can be used to express that
the user expects a minimum number of result tuples.

e an upper bound for the result cardinality. Such a parameter corresponds to a stop
after clause, whose support in query optimization and execution has already been
studied in the literature [CK98].



Parameters for the Query Execution Time: The execution of the query is character-
ized by the time spent in different phases of the execution of a plan:

e the time spent in the open-phase of a plan. In an iterator based [Gra93] query
engine like ours, this is roughly the time from the start of the query execution until
the first tuple can be delivered.

e the time for producing all the result tuples of the plan starting at the point, when the
open-phase has finished and ending, when the last tuple has been produced by the
query. This phase is called the next-phase.

Parameters for the Query Evaluation Cost: Since providers can charge for their ser-
vices in our information economy, a user should be able to specify an upper bound for the
respective consumption by a query. Therefore, the quality parameters regarding the cost
of a query take into account:

o the cost for services of function providers, i.e., the cost for leasing a function for the
duration of the query.

e the cost for services of data providers, i.e., the cost for reading the data at the re-
spective data providers.

o the cost for services of cycle providers, i.e., the cost for executing parts of the query
at foreign cycle providers.

3 The Integration of QoS Management in Query Processing

Naturally, the ability to guarantee QoS constraints depends on the service quality guaran-
tees one can get from the underlying shared resources. Among the common scheduling
disciplines best effort, priority-based scheduling, and reservation, only the latter allows
to construct a QoS management which can absolutely guarantee the QoS constraints for
an accepted query. But reservation normally entails over-booking and inefficient resource
utilization and is therefore rarely used for scheduling computer or network devices. Due
to this fact, there remain two obvious goals for QoS management in our context:

e The percentage of queries, whose quality constraints could be fulfilled, should be
maximized. This percentage is calculated based on the overall number of queries
which are issued and not only on the number of those for which a constraint com-
pliant query plan could be determined.

e The execution of queries which cannot fulfill their QoS constraints, should be stopped
as early as possible. In this way the query does not waste the time an money of the
user anymore. Of course, if the missed quality constraint is a soft one, the query
should not be stopped but executed in a best-effort manner.
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Figure 2: The Interaction of Query Processing and QoS Management

An overview of query processing with integrated QoS management is depicted in Figure 2.
The starting point for query processing in our system is given by the description of the
query itself, the QoS constraints for it and statistics about the resources which can be
used for processing the query. In our scenario cycle providers, the partitions from data
providers and the functions of function providers belong to these resources together with
all the network links connecting them.

Figure 2 also shows the activities of our QoS management during the query processing
phases of plan generation, instantiation and execution.

Plan Generation: The optimizer generates a query evaluation plan (QEP) which con-
tains information about the used data, cycle and function providers and about the
way their services are combined to compute a specific query. The optimizer itself
is in essential an intelligent search routine which is in many cases and also in ours
dynamic programming based. It assesses a huge number of different plans with dif-
ferent providers by a quality model which provides formulas for estimating the qual-
ity parameters based on the structure of the plan and statistics about the providers.
Hereby, every considered plan is constructed piecewise in a bottom-up manner and
for every sub-plan which appears in such a process its quality parameters are com-
puted with the quality model. Only a plan which fulfills all the user constraints is
considered for the later phases and its plan description will be annotated with the
quality estimations and resource requirements for every sub-plan. Additionally, if
the optimizer can find approximately equivalent alternatives for resources used in
the query evaluation plan, these are also annotated in the plan.

Plan Instantiation: During plan instantiation, sub-plans are distributed to cycle providers,
functions are loaded from function providers and connections to data providers are
established. When a sub-plan of a query uses the service of a specific provider, it is
checked, if the resource requirements resulting from the quality constraints for that
sub-plan can be satisfied by this provider. For a cycle provider this would mean that
if the optimizer underestimated the load on the respective cycle provider the newly
arrived sub-plan will probably not be able to meet its constraints. Furthermore, all
the other sub-plans on that cycle provider would be in danger of missing their qual-
ity constraints, if we execute the new sub-plan there. As a result of this admission
control, the execution of the new sub-plan would be rejected or, if possible, the
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Figure 3: The QoS Space and the QoS Window.

sub-plan will be adapted.

Plan Execution: During query execution, fluctuations regarding resource availability for,
e.g., CPU time or network bandwidth and again estimation errors by the optimizer
might violate the constraints on the quality parameters. In order to detect these
violations, a monitoring component traces the current status of these parameters for
every relevant sub-plan of the query. If this component detects a potential violation
of the quality constraints for a sub-plan, it first tries to adapt the sub-plan so that it
will meet its constraints again, or if this is not possible, it will abort the execution of
this sub-plan. The plan adaptations during the instantiation phase can be performed
rather easily because the plan is not instantiated yet. Here we need adaptations
which can be applied also after a sub-plan has started to execute.

By estimating the necessary quality constraints for sub-plans of a QoS compliant query
plan the QoS management can monitor the development of the quality parameters on a
fine granularity. This helps in detecting potential quality misses quite early. For example,
if there are pipeline-breaking operators in the plan, most of the work for the query could
have already been done, when the first tuples arrive at the top of the plan. In our case, the
plan beneath the pipeline breaker has its own quality constraints which must be monitored
and enforced by the QoS management.

4 Quality of Service Enhanced Plan Generation

In this section we mention the necessary modifications of a classic, dynamic programming
based query optimizer for supporting QoS constraints during plan generation. We concen-
trate on the description of those parts of the optimization process which play an important
role for QoS management and thus need modifications compared to their standard form.

Selecting Providers In many cases, it will not be feasible to consider all possible data
providers for a given data set because the resulting amount of data processed in a widely



distributed environment would result in unacceptable running times. Thus, an additional
task for QoS management is to select the most relevant data providers and find appropri-
ate cycle providers which are able to efficiently process the data from the selected data
providers. Since compact query evaluation plans will also be rather efficient in a large
scale environment, we use clustering algorithms to group data and cycle providers with
respect to their 'network distance’ to each other. During optimization it is often sufficient
to work on the resulting clusters instead of single providers. In this way, we can avoid the
combinatorial explosion in finding appropriate subsets of providers.

Estimating QoS Parameters Query evaluation plans are constructed in a modular way
using basic operators such as join, union, or user-defined operators. Analogously, the cost
(and other properties) of plans are computed in a modular way using cost functions for
the individual operators. For QoS management, an extended framework is needed in order
to construct plans and estimate the properties of plans in such a modular way. In our
framework, these computations are based on formulas for every operator which determine
the amount of work the operator has to perform at the phases given by the iterator model.
The information about the distribution of operators and parallelism properties of the plan
construction are then used to compute the corresponding effects on the overall timing of a
plan.

Pruning Query Evaluation Plans The query optimizer enumerates alternative plans
and prunes inferior plans based on their properties (e.g., estimated cost). A QoS-enhanced
optimizer requires a special pruning metric in order to take all QoS parameters of a query
into account. This metric is needed because we inherently use multi-objective optimization
in the QoS case. The quality dimensions span a space which we call QoS space, and the
user-defined constraints determine an area in that space which we call QoS window. This is
shown in Figure 3 for the (simplified) three dimensional QoS space. During optimization
every enumerated plan is mapped on a point in that QoS space by estimating the value for
every quality parameter which appears in the quality model. Only plans which lie within
the QoS window, fulfill the constraints of the user.

5 Adaptation of a Query Execution Plan

Query evaluation plans in our system have a “natural” fragmentation which is given by
the thread and machine boundaries which appear in the instantiated operator tree. At
these boundaries, monitor operators trace the actual quality parameters of their input plans
and forecasts these parameters for the end of execution. The corresponding optimizer
estimates for the respective sub-plan (as shown in Figure 4) represent the target values
for the forecasted values and a comparison of these values shows if the corresponding
sub-plan is still within its quotas.

When a violation of the QoS constraints is expected during the runtime of a query, we
can try to counteract this violation by adapting the query execution plan. The adapta-



X : Response Time
?7) : Cardinality
Costs

ree | overall

account
subplan
account

real estate cities

Figure 4: QoS Accounts of a Query Plan.

tions which we employ in our system to react to predicted QoS violations, operate on
the resource allocation of the query evaluation plan. The corresponding resources are,
for example, cycle providers, partitions from data providers and functions from function
providers.

Example adaptations are:

increasePriority/decreasePriority adapt the priorities of threads which execute queries
on ObjectGlobe servers. By this adaptations, we can speed up queries which need to
finish sooner and we can slow down queries which currently seem to meet their time
limits easily and can therefore free resources for queries with critical constraints.

useCompression activates on the fly compression for network links which seem to be
slower than expected.

movePlan can be used to move a sub-plan of a query from one cycle provider to another
cycle provider. Again, this adaptation can be performed on the fly in an ObjectGlobe
federation, even if the plan has already begun to work.

6 Controlling Adaptations

Plan adaptation during runtime is controlled by monitor operators because they are placed
at the most interesting positions for adaptations in the query evaluation plan and also gather
most of the information which is needed for this task. As shown in Figure 5, a monitor op-
erator uses a rule-based fuzzy controller which gets the forecasts of the quality parameters
and other state descriptions of the respective plan fragment as input. With this information
the fuzzy controller determines, if an adaptation should be applied and what adaptation
this should be.

One reason for the use of a fuzzy controller in our system is that our runtime adaptations
are discrete and this is quite easy to support in the inference rules which form the basis
of the fuzzy controller’s decisions. Furthermore, estimation errors and resource fluctua-
tions introduce some uncertainty factors in the control process which can be modeled by
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Figure 5: Feedback Loop for QoS Adaptations.

fuzzy logic [K'Y95] quite easily. The inference rules of a fuzzy controller also provide a
highly configurable means to incorporate expert knowledge for the adaptation process in a
very intuitive way. Therefore, it becomes possible to experiment with varying adaptation
strategies by just changing the inference rules and perhaps the definition of the underlying
fuzzy sets.

A fuzzifier transforms the numeric input values into linguistic values of linguistic vari-
ables. For each input variable of the controller there exists one such linguistic variable.
This transformation is depicted for the forecasted cost parameter in Figure 6. The infer-
ence rules of a fuzzy controller works on linguistic variables and values. Such a rule is of
the form

if X;is Ay and ... and X,, is A,, thenY is B

where Xq,...,X,, and Y are linguistic variables and Ay, ..., A, and B are linguistic
values with accompanying fuzzy sets. A small portion of an example rule set is shown
below. Here [fc, Ifr and Ift are the linguistic variables for cost-, result- and time quality
parameters; lep, [bp and Iss correspond to the execution progress, the buffer pressure and
the state size.

if [fc is endangered and lep is late then abort is preferred

if [ft is endangered and Ibp is high and Iss is small then movePlan is preferred

if [ft is endangered and lep is middle and [bp is high then increasePriority is possible
if Ifr is endangered and lep is early and [fc is compliant then addSubPlan is preferred
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