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Abstract: Optimization of nested queries, in particular finding equivalent “flat-
tened” queries for queries that employ the SQL sub-query construct, has been re-
searched extensively. In contrast, with the exception of nested loops join, execution 
of nested plans has found little interest. Nested execution plans may result from a 
failure to flatten nested SQL expressions but just as likely are created by a query 
optimizer to exploit all available indexes as effectively as possible. In fact, if mate-
rialized views and index tuning perform as expected, few queries should require 
large operations such as parallel scans, sorts and hash joins, and most actual query 
plans will rely entirely on navigating indexes on tables and views. Note that only 
index navigation plans scale truly gracefully, i.e., perform equally well on large and 
on very large databases, whereas sorting and hashing scale at best linearly. Since a 
typical index navigation plan employs nested iteration, this paper describes tech-
niques to execute such plans efficiently as well as means to cleanly implement these 
techniques. Taken together, these techniques can improve query performance by or-
ders of magnitude, giving them obvious practical importance.  

1 Introduction  

Database and disk sizes continue to grow fast, whereas disk access performance and disk 
bandwidth improve much more slowly. If for no other reason than that, research into da-
tabase query processing must refocus on algorithms that grow linearly not with the data-
base size but with the query result size. These algorithms and query execution plans rely 
very heavily on index navigation, i.e., they start with a constant given in the query predi-
cate, find some records in an index, extract further column values from those records, 
find more records in another index, and so on. The cost of this type of query plan grows 
linearly with the number of records involved, which might very well mean that the cost is 
effectively independent of the database size. Actually, the cost of index lookups in tradi-
tional B-tree indexes grows logarithmically with the database size, meaning the cost dou-
bles as a table grows from 1,000 to 1,000,000 records, and doubles again from 1,000,000 
to 1,000,000,000,000 records. The cost barely changes from 1,000,000 to 2,000,000 re-
cords, whereas the cost of sort or hash operations doubles. Moreover, it is well known 
that scanning “cleans” the I/O buffer of all useful pages, unless the replacement policy is 
programmed to recognize scans [S 81]. It is not likely, however, that CPU caches and 
their replacement policy recognize scans; thus, large scans will repeatedly clear out all 
CPU caches, even level-2 and level-3 caches of multiple megabytes. Based on these be-
haviors, on the growth rates of disk sizes and disk bandwidths, and on the recent addition 
of materialized and indexed views to mainstream relational database systems, we should 
expect a strong resurgence of index-based query execution and thus research interest in 
execution plans relying heavily on nested iteration.  



 

Figure 1 shows a query evaluation plan for a simple join of three tables, with the “outer” 
input of nested iterations shown as the left input. The nested iterations are simple Carte-
sian products here, as the join predicates have been pushed down into the inner query 
plans. If the filter operations are actually index searches and if table T0 is small relative 
to T1 and T2, this plan can be much more efficient than any plan using merge join or 
hash join. An alternative plan uses multiple branches of nested iteration rather than mul-
tiple levels as the plan in Figure 1; this plan would be left-deep rather than right-deep. Of 
course, complex plans might combine multiple levels and multiple branches at any level.  

Nested loops join is the simplest form of nested iteration. There is no limit to the com-
plexity of the inner query. It might require searching a non-clustered index and subse-
quently fetching from the main table; intersecting two or more non-clustered indexes 
using bitmap, sort, or hash operations; joining multiple tables each with its own access 
paths; multiple levels of nested iteration with multiple sub-branches at each level; etc. For 
all but the most trivial cases, there are complex issues that need to be addressed in a 
commercial product and in a complete research prototype. These issues exist at the levels 
of both policies and mechanisms, with avoiding I/O or exploiting asynchronous I/O as 
well as with managing resources such as memory and threads.  

  

Figure 1. A query execution plan with moderately complex nested iteration. 

The purpose of this paper is to explore these issues, to describe proven solutions and 
promising approaches, to detail how to implement those solutions, and to focus and 
stimulate research into open issues. Many useful techniques have long been known and 
are surveyed here, some for the first time. Other approaches and solutions are original 
contributions, e.g., the use of merged indexes for caching in nested iteration or how to 
manage batched correlation bindings in the outer and inner plans. For all of those tech-
niques, data flow and control flow are detailed, including new iterator methods for clean 
and extensible implementations of the described techniques in sequential and parallel 
execution plans. The following section sets the stage for the remaining ones, which cover, 
in this order, asynchronous I/O, avoiding I/O through caching and other means, data 
flow, and control flow.  

Nested iteration binds T0.a and T0.c 

Filter T2.b = T1.b 
and T2.c < T0.c 

Table scan 
T0 

Table scan T1 Table scan T2 

Filter T1.a = T0.a 

Nested iteration binds T1.b 



 

2 Background, scope, and assumptions  

In the following discussions, we do not consider query optimization, e.g., “flattening” or 
“unnesting” or “decorrelating” nested query expressions into ones that do not employ 
nesting. While an interesting and traditionally challenging topic of research and commer-
cial development, we consider it a complement to the present paper. Similarly, we pre-
sume here that the physical database design is given and cannot be tuned. Again, this is 
an important and challenging complementary topic in itself. We also do not describe al-
gorithms or data structures for indexes, as those issues are covered elsewhere.  

We presume typical contemporary database server environments, i.e., a large number of 
user connections and concurrent transactions; a small or moderate number of CPUs, each 
with its own cache; a fair amount of main memory divided among many connections, 
queries, operators, and threads; a number of disks larger than the number of CPUs by a 
small factor, say ten times more disk drives than CPUs; a database on disk many times 
larger than main memory; some virtualization in the disk layer such as caches in disk 
controllers, system-area networks, and network-attached storage; many tables of varying 
sizes, each with a small number of B-tree indexes on a few columns; non-clustered in-
dexes pointing into heap files using record identifiers (page number and slot number) or 
into clustered indexes using unique search keys; etc. Without doubt, some of the tech-
niques described here need to be adjusted if the environment changes drastically, e.g., if 
the entire database resides in main memory or if all indexes use hashing rather than B-
trees.  

For the sake of completeness, we very briefly review the various forms of nested loops 
join. Naïve nested loops join performs a simple scan of the inner input for each row of the 
outer input. If the outer and inner inputs are stored tables, block nested loops join actually 
employs four nested loops: the two outer-most loops iterate over pages (or blocks of 
some size) of the outer and inner inputs, and the two inner-most loops perform naïve 
nested loops among the rows in a pair of blocks. I/O volume is reduced by the blocking 
factor of the outer, i.e., the number of records in a block of the outer input, but the join 
predicate is evaluated just as often as in naïve nested loops. I/O will be slightly reduced if 
scans of the inner input go forward and backward, because of buffer effects each time the 
direction is reversed [K 80].  

However, unless the inner input is very small, e.g., less than a few dozen rows, the only 
version of nested loops join used in practice is index nested loops join. Many query opti-
mizers consider temporary indexes for the inner input, if no useful permanent index is 
available. These indexes are used only during a single execution of a specific query plan, 
and their contents are usually more restrictive than an entire stored table. The type of in-
dex does not really matter – it might be a B-tree index, a hash index, a bitmap index, a 
multi-dimensional index, etc. – as long as the index supports the join predicate efficiently 
and effectively, i.e., without fetching many more index entries than truly necessary.  

In general, nested iteration works better than set-oriented algorithms such as hash join if 
the outer input is very small relative to the database, such that navigating the inner input 
using indexes leaves most of the database untouched. Typical queries include not only 
OLTP requests but also cursor operations such as “fetch N more result rows” and their 
internet-age equivalents for “next page” queries with their typical “top” operations. In all 



 

these cursor-like operations, resuming where the prior request left off requires sort order, 
and nested iteration preserves the sort order from the outer input, and it might even ex-
tend it with additional ordering columns from the inner input.  

A special case of a small outer input is a set of parameters left unbound in the query text, 
to be bound when an application invokes the query. This situation can be modeled, both 
in optimization and in execution, as a nested query. The outer input is a single row with a 
column for each parameter, and the inner input is the entire original query. This is one of 
the few cases in which a query optimizer can truly rely on its “estimate” for the size of 
the outer input (other cases include exact-match predicates on unique columns and range 
selections on unique integer columns). If a parameterized query is optimized and exe-
cuted as a nested query, it is easy to see how “array invocations” with multiple sets of 
parameters can be supported.  

Even for large queries, nested iteration can be more efficient than merge joins or hash 
joins, in particular if covering indexes are available, i.e., indexes that deliver all columns 
required in a given query without fetching rows from the base table. Consider a self-join 
of a table order details on the (non-unique) column order key, e.g., for an analysis of 
purchasing combinations. A hash join needs to scan the entire table twice, with no bene-
ficial buffer effects if the table size exceeds the buffer size, and it requires a massive 
amount of memory as well as additional I/O for overflow files. In a merge join of two 
pre-sorted inputs, the two scans benefit from sharing pages in the I/O buffer, but the 
merge join requires support for the backup logic of many-to-many merge joins, often 
implemented by copying all records from the inner input into the local buffer. An index 
nested loops join, however, benefits from the I/O buffer such that all data pages need to 
be read only once, and it exploits the index on order key to find matching inner rows for 
each outer row. In general, in a well indexed database, the disk access patterns of index 
nested loops join and merge join are often very similar [GLS 93], and index nested loops 
join performs as well as or better than merge join.  

DeWitt et al. [DNB 93] found that index nested loops join can best other joins, even on 
parallel database servers considered by many showcases for hash-based join algorithms. 
The essence is that I/O cost often dominates join cost, and that index nested loops per-
forms well if the index on the inner input can ensure that only a fraction of the inner input 
must be read from disk. In fact, it has to be a small fraction, since sequential I/O (as used 
for hash join) is much more efficient than random I/O (as used by index nested loops 
join), in particular if asynchronous read-ahead overlaps processing time and CPU time.  

3 Asynchronous I/O  

Asynchronous I/O is, however, not limited to sequential scans. In a naïve implementation 
of index nested loops, each index lookup and record fetch is completed before the next 
one is initiated. Thus, there must be at least as many threads as disks in the system, be-
cause otherwise some disks would always be idle. This would not be good given that disk 
I/O is a precious resource in database query processing.  

Index nested loops join can, however, if implemented correctly, exploit asynchronous I/O 
very effectively. In some recent IBM products, unresolved record identifiers are gathered 
into fixed-sized lists, and I/O is started concurrently for all elements in the list once the 



 

list is filled up. Some recent Microsoft products keep the number of unresolved record 
identifiers constant – whenever one record has been fetched, another unresolved record 
identifier is hinted to the I/O subsystem. In general, steady activity is more efficient than 
bursts of activity.  

Fetch operations can exploit asynchronous I/O for heap files, when unresolved record 
identifiers include page numbers, as well as for B-tree indexes, where unresolved refer-
ences are actually search keys. There are two effective methods for combining synchro-
nous and asynchronous I/O in those situations, both relying on a hint preceding an abso-
lute request for the desired page. First, while descending the B-tree searching a hinted 
key, the first buffer fault can issue an asynchronous read request and stop processing the 
hint, which will be resolved later using synchronous I/O for each remaining buffer fault. 
Second, presuming that in an active index practically all pages above the leaf pages will 
reside in the buffer, searching for a hinted key always uses synchronous I/O for the very 
few buffer faults for nodes above leaves, and always issues an asynchronous I/O request 
for the leaf page. In practice, the two methods probably perform very similarly.  

The generalization of such asynchronous I/O for complex objects was described and 
evaluated by Keller et al. and Blakeley et al. [KGM 91, BMG 93], but not adopted in any 
production system, to the best of our knowledge. The central idea was to buffer a set of 
object roots or root components such that the I/O system always had a substantial set of 
unresolved references. These would be resolved using a priority queue, thus attempting to 
optimize seek operations on disk. If object references are logical, i.e., they require map-
ping to a physical address using a lookup table, both lookups should use asynchronous 
I/O.  

Always keeping multiple concurrent I/Os active can be a huge win. Most server machines 
have many more disk arms than CPUs, often by an order of magnitude. Thus, keeping all 
disk arms active at all times can improve the performance of index nested loops join by 
an order of magnitude. Even in a multi-user system, where many concurrent users might 
keep all resources utilized, reduced response times lead to higher system throughput due 
to reduced lock contention. Keeping many disks busy for a single query requires either 
aggressive asynchronous I/O or many threads waiting for synchronous I/O. For example, 
in some Informix (now IBM) products, the number of parallel threads used to be deter-
mined by the number of disks, for precisely this reason. It is probably more efficient to 
limit the number of threads by the number of CPUs and to employ asynchronous I/O than 
to use very many threads and only synchronous I/O, since many threads can lead to ex-
cessive context switching in the CPUs, and more importantly in the CPUs’ data caches. 
This presumes, of course, that I/O completion is signaled and not actively and wastefully 
polled for.  

4 Avoiding I/O  

As attractive as it is to speed up I/O, it is even better to avoid it altogether. The obvious 
means to do so is caching, e.g., in the file system’s or the database manager’s buffer. 
When computing complex nested queries, however, it is often beneficial to cache results 
even if they may not remain in the I/O buffer and may require I/O, because I/O for the 
cache might be substantially less than I/O to recompute the cache contents. Note that 
caching avoids not only repetitive computation but also repetitive invocations of the lock 



 

manager, and that the I/O buffer usually can retain cached results more densely than the 
underlying persistent data. Caching has been used in several products, e.g., IBM’s DB2 
for MVS [GLS 93] as well as recent Microsoft database products.  

It is well known that the result of an inner query can be cached and reused if the inner 
query does not have any references to outer correlation values, i.e., the inner query is 
equivalent to a constant function. Since this is the easy case with a fairly obvious imple-
mentation, we do not discuss it further here. Similarly, in a nested iteration where the 
outer input is guaranteed to have only a single row, caching is not very difficult or inter-
esting (at least not caching within a single query).  

Expensive user-defined functions are closely related to nested queries; in fact, since ei-
ther can invoke the other, it is a chicken-and-egg problem to decide which one is a gener-
alization of the other. In research and in practical discussions, there is usually a difference 
in emphasis, however. First, functions are usually presumed to invoke user-defined code 
with unpredictable execution costs, whereas nested queries usually perform database 
searches, where standard selectivity estimation and cost calculation apply, with buffer 
(caching) effects as added complexity. Second, functions usually are presumed to have 
scalar results, i.e., a single value, whereas nested queries often produce sets of rows.  

4.1 Caching results of the inner query 

For a cache, any associative structure such as a hash table or a B-tree index at the root of 
an inner query plan is sufficient. The search key is the correlation value, and the retrieved 
information is the result of the inner query for that correlation value. A single simple 
lookup structure permits caching scalar values, e.g., a sum, an average, or a Boolean flag 
whether or not the result of the inner query is empty or unique, i.e., free of duplicate rows 
[HN 96]. If the result is a set of rows, it might be necessary to employ two lookup struc-
tures, one index to indicate whether a correlation value has occurred before and another 
one with the actual results. If only one index is used, it is not clear how to remember that 
some correlation value produced an empty set. The first index, which we may call the 
control index, could be a bitmap index, but it could not be a standard bitmap filter, since 
bitmap filters usually permit hash collisions. It could be restricted to contain only those 
outer correlation values that resulted in an empty inner result, or it could contain all outer 
correlation values already seen.  

If the outer input binds multiple correlation columns as parameters of the inner query, the 
search key of the cache structure contains multiple search columns. If different branches 
of the inner query’s execution plan use different subsets of these correlation values, it is 
also possible to cache not at the root of the inner query but at the root of those branches. 
The advantage is that each of the branches is executed fewer times; the disadvantage is 
that the computation between the roots of the branches and the entire inner query is exe-
cuted multiple times. In extreme cases, it is possible to cache in multiple places, but con-
sidering too many combinations of caches can result in excessively complex and expen-
sive query optimization.  

For example, consider the query execution plan in Figure 2, which differs from Figure 1 
as there is only one nested iteration and a join or intersection within the inner plan. Note 
that tables T1 and T2 could also be different indexes of the same table in a plan using 



 

index intersection for a conjunctive search predicate. Point A is the root of the inner plan 
and a good place to cache inner results. However, it might also be possible to cache at 
points B or C, or even at all three points. If T0 contains 10,000 rows, T1 and T2 are 
scanned 10,000 times each, unless caching is employed. If T0 contains only 1,000 dis-
tinct combinations of the pair (a, b), caching only at point A means that T1 and T2 are 
scanned 1,000 times each. If, on the other hand, T0 contains only 100 distinct values of 
(a) and only 200 values of (b), caching at points B and C means that T1 and T2 are 
scanned only 100 and 200 times, respectively, although the intersection operation is still 
performed 10,000 times. Caching at all three points ensures both the lowest counts of 
intersection operations (1,000) and of scans for T1 and T2 (100 and 200).  

  

Figure 2. A query execution plan with moderately complex nested iteration. 

Many query optimizers will consider the costs and benefits of caching only at point A for 
a query of this type. Otherwise, the optimization time becomes excessive – even for this 
simple example, there are 23 alternative caching strategies to consider. Moreover, differ-
ent rows in T0 with different values in (a) and (b) may result in different selectivities in 
the filters on T1 and T2, and the chosen caching strategy must work well for all of those. 
Fortunately, in most cases, the inner query plan relies on index searches rather than table 
scans, and indexes can create powerful cache effects of their own.  

For example, if T1 is searched with an index on (a), the index itself serves the role of a 
cache at point B. Moreover, one can sort the outer input on the correlation values, such 
that equal values are in immediate succession, and inner query results can be reused in-
stantly. By sorting the outer input T0 on (a) or by scanning an index on T0.a, the index 
searches for T1 will be very “orderly,” creating a disk access pattern quite similar to a 
merge join of T0 and T1. If multiple rows from a single leaf page within the index on 
T1.a participate in the query result, it is guaranteed that this leaf will be fetched only 
once, independent of the size of the buffer pool and its replacement policy. However, if 
there are multiple correlation columns as in this example, it is not clear on which column 
sequence to sort. In the example above, should the optimizer elect to sort the outer input 
T0 on (a), on (a, b), on (b), or on (b, a)? If input T0 has an index only on (a) but not on (a, 
b), is an explicit sort operation worthwhile? Quite obviously, only a cost-based query 
optimizer can answer such questions, case by case.  

Nested iteration binds T0.a and T0.b 

Filter T2.b = T0.b 

Table scan T0 

Table scan T1 Table scan T2 

Join, intersection, or the like 

Filter T1.a = T0.a 

C  B  

A  



 

There is a related question about sorting the result of searching an index within the inner 
query. If there is a useful index, say on column (a) of table T1, how is the result cached? 
If the join operation between T1 and T2 uses a predicate on column (c) in both T1 and 
T2, the join can be computed using a fast merge join without sorting if, for any value of 
the pair (a, b) from T0, the caches at points B and C retain values sorted on (a, c) and (b, 
c), respectively. In other words, the sort on (c) is part of the computation cached at points 
B and C, enforced prior to caching intermediate results and not repeated when retrieving 
data from the caches. Using the specific counters assumed earlier, the merge join might 
be executed 1,000 or 10,000 times depending on caching at point A, but there will be 
only 100 sort operations for rows from T1 and 200 sort operations for rows from T2. In 
this case, the benefit of the caches at B and C could be savings in sort effort, whether or 
not there are worthwhile savings in I/O for the permanent data.  

Unfortunately, if a cache grows large, it may cause I/O cost of its own. In that case, it is 
possible to limit the total size of a cache by subjecting its entries to a replacement policy. 
Units of insertion and deletion from the cache are correlation values from the outer input 
of the nested iteration. Promising replacement policies are LRU (least recently used) and 
LFU (least frequently used); a reasonable measure of “recent” can be a sequence number 
attached to the outer input (using a “rank” operation, if available). Both policies can be 
augmented with the size of an entry, i.e., the size of an inner result for an outer row, and 
the cost of obtaining it, if this cost differs among outer rows. If the cache is represented in 
two indexes, one containing only previously encountered outer correlation values and one 
containing result sets from the inner query, information on costs and usage belong into 
the first one. The replacement policies for the two indexes do not necessarily have to be 
the same, such that statistics might be kept even for outer correlation values that have 
temporarily been evicted from the cache of inner results – reminiscent of the LRU-k pol-
icy that has been proposed for disk buffers [OOW 93].  

Materialized and indexed views can be exploited as special forms of the caches discussed 
so far. If incremental maintenance of materialized views with join and semi-join opera-
tions is supported, permanent auxiliary tables can perform the role of control indexes 
discussed above. For any value currently found in the control table, the materialized view 
contains the result of the nested query. Creation of materialized views and their control 
tables can be left to an index tuning tool or perhaps even the query optimizer. Query exe-
cution can simply ensure that the actual parameter values are present in the control table 
and then immediately retrieve the results rows from the result table. “Ensuring” presence 
of certain rows in the control table uses the “merge” operation of ANSI SQL, sometimes 
also called “insert or update,” and its implementation in query execution plans. If control 
rows contain information beyond the actual parameter values, e.g., last-used time stamp 
for use by an LRU replacement scheme, there is indeed an update component. The trans-
actional context for inserting a new row into the control table should be a system transac-
tion, not the user transaction and its isolation level etc., although this system transaction 
should run within the user’s thread (similar to a system transaction that splits a B-tree 
page). The user transaction then locks the control rows it reads, precisely the same way as 
rows in an ordinary table or in a materialized view. An asynchronous system task can 
remove rows from the control table that are not worth keeping, which of course instantly 
removes the appropriate result rows from the materialized view and all its indexes.  



 

4.2 Implementation of sorting 

Sorting the outer input is worthwhile with respect to I/O in the inner plan if it can achieve 
advantageous buffer effects for page accesses in the inner plan. If a table or index ac-
cessed in the inner plan is so small that it will fit entirely in memory or in the I/O buffer, 
sorting the outer does not reduce I/O in the inner. Conversely, if the table or index ac-
cessed in the inner is so large that there are more pages (or whatever the unit of I/O is) 
than there are rows in the outer input, sorting the outer does not reduce I/O in the inner, 
except if the outer input contains rows with duplicate correlation values.  

In order to achieve the benefits of sorting with the least run-time cost, the implementation 
of sorting must be integrated neatly with the query processor. Intermediate result rows on 
the input of the sort operation must be pipelined from the prior query operation directly 
into the sort, and sorted rows must be pipelined directly into the next operation. In other 
words, the only I/O due to a sort operation should be sorted intermediate run files. A sort 
implementation that is limited to reading its input from a stored table or index and writing 
its output to a stored table or index may triple the I/O cost due to the sort. Nonetheless, 
despite just such an implementation of sorting, DeWitt et al. observed substantial per-
formance advantages for nested loops join due to sorting the outer input [DNB 93].  

Rather than sorting the outer input completely, sorting only opportunistically might 
achieve sufficient locality in the inner input to realize most of the potential savings. For 
example, if the cost of an external merge sort is high, the optimizer might choose to run 
the outer input through the run generation part of an external merge sort but without writ-
ing any runs to disk. This technique is promising if the number of records in the gener-
ated runs is larger than the number of pages in the file from which matching records are 
fetched. In addition, if the inner input is stored in a clustered index, sorting the outer 
might improve cache locality while searching the clustered index. In order to preserve a 
steady flow of intermediate result records within the query plan, replacement selection 
based on a priority queue is probably a better algorithm than read-sort-write cycles typi-
cally associated with quicksort. Moreover, replacement selection on average yields runs 
twice as long as quicksort.  

4.3 Merged indexes 

Another means to avoid I/O is physical clustering. Master-detail clustering in relational 
and other database systems has long been known to reduce I/O when nested iteration 
plans assemble complex objects [H 78].  

As a prototypical example, consider how to merge the clustered indexes for the relational 
tables customers, orders, order details, invoices, and invoice details. The goal is that all 
information about a single customer is in a single leaf page or in adjacent leaf pages. The 
significant characteristics of the example are that it includes both multiple levels and 
multiple branches at one level, and that it mixes “strong entities” and “weak entities”, i.e., 
ones with their own unique identifier, e.g., order number, and ones which rely for their 
existence and identity on other entities, e.g., line number within an order.  

One very useful way to think about master-detail clustering is as multiple traditional sin-
gle-table indexes merged into a single B-tree (or hash structure, or B-tree on hash values). 
In this design, all participating single-table indexes share some leading key columns, but 



 

typically not all key columns. Alternatively, one can extend some or all of the participat-
ing record types such that each record contains the union of all key columns. However, 
this alternative suffers from poor extensibility, because all existing records must be re-
formatted when a new single-table index and a new record type with a new key column 
are introduced, even if the new table contains no rows yet.  

In the more flexible design, the sort key in a merged B-tree is more complex than in a 
traditional single-index B-tree. Each column value is prefixed by its domain (or domain 
identifier, or type, or type identifier), very similar to the well known notions of tagged 
union types. A new column type is the identifier of the single-table index to which a re-
cord belongs. Columns following the index identifier may omit their type identifiers. 
Figure 3 shows an example record for the orders table. While the design in Figure 3 lends 
itself to key normalization of the entire record, alternative designs tag each record with 
the identifier of its schema and compare records by alternating between two schemas and 
the two actual records.  

Even the index of the order details table must include the leading field customer number 
in order to achieve the desired clustering of records in the B-tree. Such denormalization 
and field replication is required if two conditions hold. First, there must be multiple levels 
in the join graph that reassembles the complex objects from the index. Second, some in-
termediate tables must have unique keys of their own (a primary key that does not in-
clude a foreign key, or strong entities in the entity-relationship model) such as the table 
orders. In effect, the index for order details could be thought of as an index not on the 
table order details but as an index on the view joining orders and order details, and the 
maintenance of the index uses standard update plans for indexed (materialized) views.  

Field value Field type 
 “Customer number” Domain identifier 

Customer number Actual value 
“Order number” Domain identifier 
Order number Actual value 

“Table and index identifier” A fixed domain identifier 
Orders table, Customer Order index References to catalog entries 

Order date Actual value 
Order priority Actual value 

… … 

Figure 3. A sample record in a merged B-tree index. 

Note also that the above index does not permit searching for order or order details rows 
by their order number only. Thus, it might be useful to introduce a separate index that 
maps order numbers to customer numbers. Moreover, either such an index is required for 
both the orders and the order details tables, or the query optimizer can exploit the index 
on orders even for order details searches on order number by analyzing primary and 
foreign key constraints, i.e., functional dependencies within and across tables.  

Implementing master-detail clustering as multiple traditional single-table indexes merged 
into a single B-tree creates useful flexibility. For example, in a many-to-many relation-
ship such as between suppliers and parts, it is possible to define two indexes on the table 



 

representing the relationship, part supply, one on the foreign key part number and one on 
the foreign key supplier number, and then merge one of those indexes with the primary 
key index on the parts table and one with the primary key index on the supplier table. 
This design enables fast navigation from parts to suppliers and from suppliers to parts.  

Even multiple indexes from a single table can be merged into a single B-tree, e.g., for a 
recursive relationship such as “reports to” among employees. In this example, the two 
indexes would be on employee id and manager’s employee id – one of these could even 
be the clustered index, if desired.  

In addition to I/O savings when assembling complex objects, merged indexes are also 
very useful for caching in query plans with nested iteration. In the earlier discussion of 
caches and replacement policies, we presumed two indexes, a control index that captures 
which combinations of parameter values have been processed before, and a data index 
that contains the results of nested query executions. Since both indexes use the correla-
tion columns as the search key, it is obvious that they can be merged into a single B-tree, 
with equally obvious I/O savings.  

4.4 Index intersection versus multi-dimensional indexes  

For equality predicates on multiple columns, single-dimensional multi-column indexes 
are sufficient. For example, the predicate where salary = 20 and bonus = 5 can be proc-
essed efficiently using a traditional multi-column B-tree on employee (salary, bonus). If 
range predicates on multiple columns are frequent, e.g., where salary between 20 and 30 
and bonus between 3 and 9, multi-dimensional index could be considered. Rather than 
implementing an entirely new index structure, a single-dimensional index combined with 
a space-filling curve can be very attractive, e.g., a B-tree for a Peano or Hilbert curve 
[B 97, RM 00, MJ 01].  

There are effective techniques to reduce the I/O even in a single-dimensional multi-
column index. For example, if there are only a few qualifying values of the first column 
(salary in the example index above), these values can be enumerated efficiently using the 
index, and then for each such value, index entries that qualify for the entire predicate can 
be searched for directly. This technique is exploited in some products by Tandem (now 
HP) and Sybase [LJB 95].  

5 Data flow  

The preceding discussion covered I/O, both avoiding it and speeding it up when it cannot 
be avoided. The present section covers data flow, i.e., how records should move in a 
complex query execution plan to achieve the desired effects on I/O. The subsequent sec-
tion will cover control flow, i.e., how the desired data flow can be implemented with effi-
cient and extensible mechanisms in single-threaded and multi-threaded query execution.  

5.1 Batches of bindings  

Sorting the outer input is only one possible method of many for improving the locality of 
data access in the inner plan. An alternative is to loosen the restriction that the inner exe-
cution plan can execute on behalf of only one outer row at a time. In other words, multi-



 

ple outer rows are bound and the inner plan executes only once for the entire set, hope-
fully improving execution efficiency. In general, it seems that batched execution is read-
ily applicable if all intermediate results in the inner plan either are the same for all outer 
bindings in the batch or if distinct bindings in the outer bindings partition all stored tables 
and intermediate results in the inner plan into disjoint subsets of rows. In the first of those 
cases, the expected efficiencies are similar to caching; in the second case, they are similar 
to the advantages of set-oriented SQL queries compared to application-level row-at-a-
time cursor operations. The size of the set may be determined simply by counting outer 
rows or by some column value in the outer input, very similar to value packets [K 80a].  

5.1.1 Temporary storage for batches  

In order to achieve these efficiencies, the batch of outer bindings must be accumulated 
and thus stored within the inner plan. Thus, it might be useful to introduce a new leaf in 
the inner plan (or multiple copies of the same leaf). This leaf is similar to a table stored in 
the database, except that it is a temporary table populated from above with a batch of 
outer bindings. If such a leaf is the direct input into a sort or (as build input) into a hash 
join, special implementations or modes of those operations may subsume the function of 
the new leaf. Thus, a sort operation may be the leaf of a query plan, with its input passed 
in as a batch of outer bindings; and a hash join may have only one input (the probe input).  

For example, consider an inner plan that includes a filter operator with a predicate like 
"t.a = @a" where "t" is a table scanned in the inner plan and "@a" is a correlation bound 
by a nested iteration above the filter operator. For this filter to work for a batch of values 
for "@a", it might be advantageous to put all those values into a hash table. Thus, the 
filter becomes a hash join with the hash table built from outer correlation bindings. Note 
that this is very similar to a hash-based implementation of the filter operation for predi-
cates of the form “t.a in (@a, @b, @c, @d, …, @z)” – some applications, in particular 
those with their own caches, employ very long “in” lists that benefit from a hash table in 
the filter operation, and a hash-based implementation of “in” filters is required to support 
those applications efficiently. Rather than implementing multiple forms of filter, it might 
be simpler to employ the hash join implementation for all filters that require memory for 
binding values; in the extreme case, with a single row in the build input.  

Alternatively, implementation effort is reduced by implementing accumulation of outer 
bindings only in the new leaf operator and, where necessary, to use the leaf operator as 
the input for sort and hash join, e.g., as build input in the example. Using this simplifica-
tion, both sort and hash join implementations are less complex and more maintainable, at 
probably only a moderate loss of execution efficiency.  

One of the possible inefficiencies in an execution plan with batched bindings is that the 
outer rows must be visited twice within the outer plan, once to bind correlation values for 
the inner query and once to match the result of the inner query with the outer rows. More-
over, these rows might have to be stored twice, once in the outer execution plan and (at 
least) once in the inner execution plan. Fortunately, it is possible to share the actual store 
location or, alternatively, to bind entire outer rows such that the result of the inner query 
includes all columns required in the result of the nested iteration. The convenience and 
efficiency of storing and revisiting those outer rows might determine the optimal size of 
each batch of outer rows. One means to ease the implementation is to create a temporary 



 

rary table, and to scan it repeatedly as required. If the batches are small, the temporary 
table will remain in the buffer pool and therefore never require I/O. If larger batches re-
duce more effectively the total cost of executing the inner plan and if those batches are 
large enough to spill from the buffer pool, one might as well compute and spool the entire 
outer input before initiating the inner input. This query execution plan achieves precisely 
the effect called sideways information passing or magic decorrelation in query optimiza-
tion [SHP 96], which is closely related to semi-join reduction [BC 81].  

5.1.2 Details of matching outer rows and inner results  

If the inner query is invoked for batches of outer rows, each inner result row must be 
matched correctly with outer rows. If the outer correlation values may contain duplicates, 
either these duplicates must be removed prior to executing the inner query or they must 
be made unique by adding an artificial “rank” column. This notion of an artificial rank 
column is a standard technique when duplicate rows can create problems, e.g., when non-
clustered indexes point to base rows in non-unique clustered indexes using search keys, 
when un-nesting and re-nesting non-first-normal-form relations [ÖW 92], when pausing 
and resuming a cursor or a series of next-page queries [L 01], etc.  

The operation that matches outer rows and results from the inner query plan also needs to 
ensure correct scalar results. In SQL, a nested query may be used in place of a scalar 
value, e.g., “where T0.a = (select …)”, as opposed to in place of a table expressions, e.g., 
“where T0.a in (select …)”. In the latter case, any number of result rows from the inner 
query are permitted. In the former case, however, it is a run-time error if the inner query 
produces zero or multiple rows. These semantics must be preserved in any execution 
plan, including plans that employ batches of outer rows. Suitable algorithms are well 
known as “hybrid cache” [HN 96] or “flow distinct” [GBC 98].  

5.1.3 Mixed batched and non-batched execution  

If, in a complex inner plan, some operations permit batches and some do not, it is possi-
ble to invoke the entire inner plan with batches yet invoke some parts of the inner plan 
one outer row at a time. A simple technique to achieve this is adding to the inner plan a 
nested iteration (to bind one outer row at a time), with a leaf operator (to store an entire 
batch) as outer input and the row-at-a-time part of the inner plan as inner input.  

Figure 4 illustrates this idea. It only shows the crucial components; a query optimizer 
would not choose this plan as it is as the inner plan is trivial. The upper nested iteration 
creates batches. Bindings are spooled in a temporary table in the leaf node. Once an en-
tire batch has been bound, the upper nested iteration requests result rows from the lower 
one. To produce those, the lower iteration will obtain a single row from the spool opera-
tor, bind it to the inner plan, and pass result rows to the upper nested iteration.  

5.2 Parallel execution  

While batches can be very helpful for reducing I/O, they are practically required for effi-
cient parallel execution of nested query plans, in particular nested query plans in distrib-
uted-memory parallel database servers. On the one hand, the cost of crossing boundaries 
between threads, processes, or machines is very high compared to invoking iterator 



 

methods (a simple invocation of a virtual method). Thus, each crossing of boundaries 
should be leveraged for many rows. On the other hand, each thread executing the inner 
plan may be invoked by multiple threads executing the outer plan and controlling the 
nested iteration. Thus, inner result rows must be tagged with the outer row and the re-
questing outer thread. The required tags are very similar to the tags required in batched 
execution of inner plans; thus, any tagging required for executing inner plans for batches 
of outer rows introduces no additional overhead.  

  

Figure 4. Using two nested iterations to create and dissect batches.  

For these two reasons, inner query plans in parallel environments are best invoked for 
batches of outer rows. If the switch to batched execution cannot be accomplished auto-
matically and transparently by the query execution engine, the query optimizer should 
attempt to rewrite the query using techniques described elsewhere as semi-join reduction 
and as magic decorrelation [BC 81, SHP 96]. If those techniques do not apply, batches of 
outer rows can be passed to the inner plan across thread, process, or machine boundaries, 
yet such batches are processed one row at a time using the technique shown in Figure 4 
for complex inner plans in which some operations permit batch at a time operations and 
some do not.  

6 Control flow  

Given the large variety of algorithmic techniques described so far, implementing a state-
of-the-art query execution engine might seem dauntingly complex. This section shows 
how to integrate the above techniques into an iterator interface very similar to the ones 
used in most commercial database systems [G 93]. The main operations for an iterator 
are, very similar to a file scan, open, get next record, and close. Each iterator invokes and 
therefore schedules all its input iterators or producers in demand-driven query execution. 
Alternatively, each iterator could invoke and schedule its output iterators or consumers in 
data-driven query execution, using an accept next record iterator method. Demand-driven 
query execution is preferable if multiple operators execute within a single process and if 
joins are more frequent than common subexpressions, i.e., when there are more opera-
tions with multiple inputs than operations with multiple outputs. On the other hand, data-
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driven iterators seem preferable if iterators always communicate across thread boundaries 
or even machine boundaries and if common subexpressions are more frequent than joins.  

6.1 Generalized spool iterator 

In the following, we presume iterators based on demand-driven data flow. For common 
subexpressions, we presume a spool iterator that buffers its single input stream and pro-
vides the data to its multiple consumers at their desired pace. This operator exists in some 
form in most systems, for multiple purposes such as staging the result of a common 
subexpression or providing phase separation for protection from the Halloween problem 
[M 97]. As much as possible, in-memory buffers ought to be used, although temporary 
disk space must be available in case the input stream is very large and multiple consum-
ers demand data at different rates. If the input data are sorted in a way that is useful later 
in the query plan, a sorted data structure such as a B-tree ought to be used.  

The spool iterator can consume its input eagerly or lazily. The eager mode consumes its 
entire input immediately when opened, similarly to a sort iterator. The lazy mode con-
sumes its input only as fast as the fastest consumer requires spool output. The two modes 
can be a single implementation with a simple run-time switch.  

This spool iterator can be generalized beyond these two prototypical modes for efficient 
nested iteration. For example, asynchronous I/O can be implemented using two fetch 
iterators, one providing prefetch hints to the store and the other actually obtaining the 
fetched records. These fetch iterators are separated by a spool iterator with a fixed-size 
record buffer to ensure that the store can always have multiple outstanding asynchronous 
I/O operations. This buffer can be run strictly first-in-first-out or it can use a priority 
queue (replacement selection) to pre-sort records. This mode of spool also can be useful 
in the outer input of a general nested iteration, as it may increase locality within the inner 
query without much cost. The buffer can be replenished from the input only when en-
tirely empty (batch mode) or after each record passed to the consumer iterator (sliding 
window mode). A typical use case for the latter variant is enabling asynchronous I/O, 
while the former variant allows temporarily releasing resources in one part of a query 
plan for use in another part, e.g., releasing memory in an outer plan to make it available 
in an inner plan. However, managing resources explicitly and efficiently requires addi-
tional iterator methods to control resource usage, which will be discussed next.  

6.2 New iterator methods 

The principal mechanism to adapt the iterator interface to nested iteration is to extend the 
set of methods provided by all iterators. With almost half a dozen additional methods, a 
state diagram or a state transition table are the most concise means to convey all permis-
sible method invocation sequences. A very helpful utility while developing a query exe-
cution engine is a “debug” iterator that can be inserted at any place in any query plan, 
where it enforces the state transition diagram, counts or prints intermediate result records, 
verifies sort order and other data properties predicted by the query optimizer, etc. If a 
version of this iterator is included in the final release of the query execution engine, it can 
compare anticipated and actual record counts or column distributions, and can thus also 
serve as the foundation for run-time feedback to the optimizer.  



 

The required states capture whether an iterator is open or closed, whether or not all pa-
rameters are bound (ready), whether a result record has been produced but not yet re-
leased (busy), and whether or not the iterator is paused. Introducing the new iterator 
methods one by one will also clarify the purpose and semantics of these states.  

Old state Iterator method New state Comment 
Closed Open() Open  
Open Rewind() Ready Nothing unbound 
Ready GetNext() Busy Success 
Ready GetNext() Ready Failure, e.g., end 
Busy Release() Ready  
Ready Close() Closed  
Ready Rewind() Ready  
Open Close() Closed  
Open Bind() Open  
Open Unbind() Open  
Ready Unbind() Open  
Ready Pause() Ready & paused  
Ready & paused Resume() Ready  
Busy Pause() Busy & paused  
Busy & paused Resume() Busy  
Ready & paused Rewind() Ready  
Ready & paused Unbind() Open  
Ready & paused Close() Closed  

Table 1. Iterator methods and state transitions. 

In nested iteration, an additional iterator method rewind is required. For each outer row, 
the inner input is rewound, and the entire inner result can be recomputed. Most iterators 
implement this method by rewinding all their inputs; in this case, a rewind operation re-
starts an entire query plan. One exception to this rule is the spool iterator, which can sim-
ply fall back on its buffer to produce its output over and over. For simplicity, it might be 
tempting to require that the spool be eager; however, for efficiency, this is not a good 
design, because many nested queries terminate early, e.g., an “exists” or “top” subquery. 
Other “stop and go” operators might also implement efficient local rewind, e.g., sort and 
hash join. Unfortunately, hybrid hash join is more efficient than the original Grace hash 
join precisely because it does not write all its input to temporary files; thus, rewinding 
hybrid hashing might require more special cases than one is willing to implement, test, 
and support. In-memory hashing and completely external hashing (Grace hash join with-
out dynamic destaging) lead more easily to efficient rewind operations. Sorting, on the 
other hand, can implement rewind operations quite readily; for example, only the final 
merge step needs to be restarted in an external merge sort.  

For nested iteration with correlations, bind and unbind methods are required. If batched 
execution is not implemented, bind and unbind calls must be alternating strictly. In most 
cases, bind and unbind methods recursively traverse the entire inner plan, even across 
nested iteration operations within an inner plan. Implementations of the unbind method 
should not abandon all cached intermediate results, and the bind method should indicate 



 

whether or not the new bindings invalidate intermediate results cached further up in the 
execution plan. In execution plans with complex inner plans, it is advantageous to anno-
tate each sub-plan (or its root iterator) with the set of unbound parameters, and to avoid 
tree traversals where bind operations have no effect.  

In order to implement batched execution, multiple bind operations without interleaved 
unbind operations must be permitted. In effect, a table of parameters is streaming down 
with the inner query plan, from the nested iteration towards the scan operations at the 
plan’s leaves. The rows of this table, or the records in this data stream, may be buffered at 
one or multiple places in the inner plan, for later use. For example, an exchange operator 
might employ buffering, to be discussed shortly. As another example, a special spool 
iterator might be a plan leaf and buffer not an input stream but a table of parameters. Dur-
ing execution of the inner plan, the rows buffered in a spool iterator in leaf mode are like 
another input table for the inner plan – in fact, “magic” query execution and side-ways 
information passing presume that the entire set of parameters is a single large batch and 
serves as an additional input table in the inner query plan, which can readily be imple-
mented using this leaf mode of spool.  

In addition to the close method, which releases all resources but also terminates all itera-
tion, a method is needed that lets a plan release resources for a while, in particular mem-
ory, yet later resume iteration. The methods to do so are pause and resume. For example, 
to pause a scan might release buffer pages used for double buffering, or a sort operation 
might write its input to disk even though the input was smaller than the memory available 
to the query. More interesting and more efficient, however, are iterators that do not im-
mediate release their memory, but only register it as “waiting” with a query-wide mem-
ory manager. Only if the memory is indeed needed, and only as much as needed, will 
indeed be released. For example, if two sort operations feed a merge join, and their com-
bined input is only slightly larger than the memory allocated to the query, only part of the 
first sort’s input is written to a run file on disk, the remainder kept in memory as an in-
memory run, and the two runs merged when sorted input is required by the merge join.  

There are three typical use cases for the pause and resume methods. First and most im-
portantly, a binary operation needs to open its inputs one at a time, and whichever input is 
opened first should pause while the second input is being opened. For example, a merge 
join fed by two sort operations can pause the first sort (which can therefore release its 
memory) while opening the second input. Earlier work presumed that between an itera-
tor’s open invocation and its first get next invocation would be the equivalent of a pause. 
Explicit iterator methods enable more control without requiring much more mechanism. 
The merge join in this example is typical for any bushy plan with resource contention 
among its branches.  

Second, operations such as minor sort (sorting a pre-sorted stream on additional columns) 
or spool in batch mode consume their input and produce their output in batches. After a 
batch has been consumed, the input plan should release its resources if they can be used 
more productively elsewhere, e.g., in the inner plan while pausing the outer input. Thus, 
the spool iterator in batch mode should invoke the pause method on its input after filling 
its buffer with input rows.  



 

Third, after a nested iteration iterator has bound a batch of outer rows to the inner query, 
the outer input may pause and release its resources for use other operations, in particular 
the inner plan. If both outer and inner plans are complex plans with memory-intensive 
bitmap, sort or hash operations, explicitly releasing and re-acquiring resources permits 
better performance with less memory contention.  

Finally, as a performance feature, it may be useful to implement an iterator method that 
combines the bind-rewind-next-unbind sequence for a single record in a single method 
invocation, because there are many cases in actual query plans where it is known at com-
pile-time that only a single record is needed. Typical examples include “exists” predi-
cates and scalar nested queries, i.e., nested queries in place of scalar values. For the latter 
example, it is also very useful to implement a control flag in the iterator actually joining 
outer and inner rows that raises a run-time error if the inner result is empty or if it con-
tains more than a single row (although the multiple-row case can be detected in a separate 
iterator, too, as discussed earlier).  

6.3 Parallel execution 

As discussed above, iterators can be data-driven or demand-driven. The former mecha-
nism is most suitable for single-thread query execution, whereas the latter is often con-
sidered superior in parallel, multi-thread query execution. Fortunately, the two models 
can be combined, e.g., in the exchange operator that exposes and supports demand-
driven iteration in its interaction with neighboring iterators within a thread but employs 
data-driven data flow (with flow control or “back pressure,” when required) across thread 
and machine boundaries [G 96].  

Parallel execution of nested queries presents two principal difficulties not encountered in 
single-threaded execution. First, crossing a thread, process, or even machine boundary is 
quite expensive, in a variety of ways. Most obviously, data packets must be assembled 
and, usually, the operating system and thread scheduler get involved. In addition, some 
threads must wait for data, and during the wait time, other threads will take over the CPU 
and more importantly the CPU cache. The second principal difficulty is that there might 
be multiple consumer threads that need to bind parameters for and invoke producer 
threads. In other words, each producer thread must produce data for every one of the con-
sumer threads. The alternative design, assigning a pool of producer threads to each con-
sumer thread, leads to an explosion in the number of threads, in particular if a query plan 
employs multiple levels of nesting – thus, this design does not scale to complex queries.  

Differently than the iterator methods that bind and unbind parameters (or more precisely 
rows of parameter sets) as well as return results (or result rows), some iterator method 
affect the entire stream and the entire iterator state. For those, namely rewind, pause, and 
resume, the consumer side must wait for all producers to reach the appropriate state and 
invoke the same method. In other words, the producer side can, for example, only rewind 
after all consumers have requested it. Similarly, each producer must invoke all producers 
to rewind. For pause and resume, producer side must be active if at least one consumer 
requires it, and may pause only if all consumers require it. This coordination happens in 
each consumer – only the last pause and the first resume are passed from the consumer 
half of the exchange iterator to its input iterator.  



 

7 Summary and conclusions  

In summary, executing nested queries efficiently is not as simple as it might seem at first 
sight. Carefully implemented and managed, asynchronous I/O can improve execution 
performance by an order of magnitude in single-user operation and by a substantial mar-
gin in multi-user operation. Sorting correlation values in the outer query, entirely or only 
opportunistically using readily available memory, can improve locality and lookup per-
formance in the inner query. Caching results of nested queries, including the fact that a 
result is empty for a given set of correlation values, can be an alternative or complemen-
tary technique, possibly contributing performance improvements of another order of 
magnitude. Since there may be many correlation values, data flow techniques such as 
processing in batches must apply not only to intermediate result data but also to streams 
of correlation values, particularly in parallel database systems. Finally, since inner que-
ries can be very complex in their own right, outer query, inner query, and their result may 
compete for memory and other resources, which therefore must be mediated for maximal 
efficiency and query performance.  

Crucial policy issues have not been resolved here, in particular allocation of memory and 
threads. Further issues include policy settings for asynchronous I/O, batching, and cach-
ing, e.g., LRU policies for cached results. There is no well-understood and agreed-upon 
solution for those issues that is simple enough to implement and test; general enough to 
cover nested iteration with multiple levels and multiple branches at each level, and with 
memory- and CPU-intensive sort-, hash-, and bitmap operations at multiple levels; and 
robust enough for database users to accept without the need or desire for manual tuning. 
Working through those issues towards a solution that combines generality with simplicity 
and robustness is a challenging research problem with immediate practical application. If 
this paper has contributed stimulation for this research, it has fulfilled its purpose.  
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