SQL/MM Spatial: The Standard to Manage Spatial Data in
Relational Database Systems

Knut Stolze

Friedrich—Schiller—University Jena IBM Entwicklung GmbH
Database and Information Systems Group DB2 Extenders Development
Ernst—-Abbe—Platz 1-4 Schonaicher Str. 220
07743 Jena, Germany 71032 Boblingen, Germany
stolze@informatik.uni-jena.de stolze@de.ibm.com

Abstract: Several major database systems provide extensions to support the man-
agement and analysis of spatial data in a relational database system [IBM02, Ora0l,
IBMOL1]. The functionality is also standardized in ISO/IEC 13249 SQL/MM. This pa-
per presents part 3 of the standard and discusses it critically. The spatial data types
and methods on these types are explained. The Information Schema, showing spatial
columns and spatial reference systems, is an important part for the handling of spatial
data. It is described in the paper as well.

1 Introduction

ISO/IEC 13249 SQL/MM is the effort to standardize extensions for multi-media and
application-specific packages in SQL. SQL, as defined in [ISO99], is extended to man-
age data like texts, still images, spatial data, or to perform data mining. The standard is
grouped into several parts.

Part 1 is the framework for all the subsequent parts and defines the definitional mecha-
nisms and conventions used in the other parts as well the common requirements that an
implementation' has to adhere to if it wants to support any one of the extensions defined
in the standard. Part 2 is the full-text standard, which is concerned about the mechanisms
to provide extended text search capabilities, above and beyond the operators provided by
SQL, e. g. the LIKE predicate. Part 5 defines the functionality to manage still images, and
part 6 is concerned with data mining. The withdrawn part 4 addressed general purpose
facilities.

ISO/IEC 13249-3 SQL/MM Part 3: Spatial [ISO02c] is the international standard that
defines how to store, retrieve and process spatial data using SQL. It defines how spatial
data is to be represented as values, and which functions are available to convert, compare,
and process this data in various ways.

IThe SQL standards use the term implementation to refer to a program that implements the interfaces defined
by the standard. Commonly, an implementation is a relational database system.

The first version of the standard was published in 1999. In the years since then, several en-
hancements were added to the document, and the second version is now available as Final
Draft International Standard (FDIS). It is expected that it will be published as International
Standard (IS) in the near future.

In this paper, geometries like points, lines, and polygons—or composites thereof—are also
referred to as spatial data. Geometries can be used in many different application domains.
The model as specified by the SQL/MM standard is applicable to a variety of different data
spaces. The spatial reference system associated for a geometry identifies the data space
used for that geometry. For example, it defines whether a geometry models a geographic
feature or some other, more abstract feature.

The most common case where spatial data is used in practice are geographic information
systems (GIS). There, the term geometry is used to denote the geometric features that
cartographers have used for the past centuries to map the world. An abstract definition
of the meaning of geographic geometry is “a point or aggregate of points representing a
feature on the ground.” Thus, a geometry is—usually—a model of a geographic feature.
The model can be expressed in terms of the feature’s coordinates. The model conveys
information; for example, the coordinates identify the position of the feature with respect
to fixed points of reference.

In the non-geographic applications, a geometry can identify, for example, a feature in a still
image where no relation to the earth can be established. Another example are locations
inside a grocery store. Although a relation to the earth could be computed based on the
latitudes and longitudes, a preferred representation for an application might only refer to
the locations with respect to a fixed point in the store, e. g. the south-east corner.

The SQL/MM standard is divided into clauses. The clauses 5 thru 9 describe the geometry
types and the methods provided for each type. The Information Schema, based on a Defi-
nition Schema is defined in clause 14. The remaining clauses, which are not described in
this paper, explain the underlying spatial concepts, the angles and direction handling, and
the States codes and conformance rules for products that implement the standard.

Several products exist, which implement spatial extensions for relational database systems.
For example, the DB2 Spatial Extender is available for IBM’s DB2 Universial Database
(UDB), the IDS Spatial DataBlade and Geodetic DataBlade for IBM’s Informix Dynamic
Server (IDS), and Oracle offers the Oracle 9¢ Spatial product. At should be noted that the
list given here only shows the more commonly known products and additional products
can be found as well.

The paper explains and discusses the content of the main clauses in the standard in more
detail. Section 2 shows which spatial data types exist, how they are organized, and which
functionality is provided for each type. Two short examples show how to use the spatial
functionality in a relational database in section 3. Like any other part of SQL/MM, the
Spatial standard contains an Information Schema. The views in that Information Schema
are listed in section 4. The paper is completed with a summary and outlook on the possible
future developments of the standard in section 5.

2 Spatial Data Types
2.1 History

The roots of the SQL/MM Spatial standard are directly apparent in the type hierarchy. The
standard was originally derived from the OpenGIS Simple Features Specification for SQL
[OGC99], also published in the year 1999 as version 1.1 by the OpenGIS Consortium
(OGC). The Simple Feature Specification defines a so-called "Geometry Model”. The
geometry model consists of a class hierarchy, which is shown in figure 1.

Geometry SpatialReferenceSystem
Point Curve Surface Collection
1+ 2+ 4 4)\
LineString Polygon MultiSurface MultiCurve MultiPoint

A fT 2 4

MultiPolygon || MultiLineString

¥

Line LinearRing

Figure 1: OpenGIS Geometry Class Hierarchy

The geometry model is an abstract model. It is used to define the relationship between
the various classes and to establish the inheritance rules for the methods working on the
instances of the classes and subclasses. For example, the method Area is defined for the
class Surface and is available for all instances of Surface, Polygon, and further subclasses,
whereas the method ExteriorRing is only defined on the subclass Polygon and, thus, cannot
be used for arbitrary instances of the class Surface.

The SQL/MM standard uses consistently the prefix ST_ for all tables, views, types, meth-
ods, and function names. The prefix stood originally for Spatial and Temporal. It was in-
tended in the early stages of the standard development to define a combination of temporal
and spatial extension. A reason for that was that spatial information is very often tied with
temporal data [SWCD98, SWCD97, RA01, TIS97]. During the development of SQL/MM
Spatial, it was decided that temporal has a broader scope beyond the spatial application
and should be a part of the SQL standard [ISO99] as SQL/Temporal [ISO01]. The con-

tributors to SQL/MM did not want to move forward with a Spatio-temporal support until
SQL/Temporal developed.? In the mean time, thefocus of spatial standard lied on keeping
it aligned with the OGC specification and the standards developed by the technical com-
mitee ISO/TC 211, for example [ISO02a, ISO02b]. The prefix ST- for the spatial tables,
types, and methods was not changed during the organizational changes of the standards,
however. Today, one might want to interpret it as Spatial Type.

2.2 Geometry Type Hierarchy

The OGC geometry class hierarchy is adapted for the corresponding SQL type hierarchy
that is defined in the SQL/MM standard. Figure 2 shows the standardized type hierarchy.
The shaded types are the not-instantiable types.? All types are used to represent geometric
features in the 2-dimensional space (R?).

ST_Geometry

A

l l |

ST_Surface ST_Curve ST_Point ST-GeomCollection
A A

ST_CurvePolygon ST_MultiSurface ST_Mul[tiCurve ST _MultiPoint
0

ST_Polygon ST_MultiPolygon ST_MultiLineString

ST_LinleS[ring ST_CircularString ST_CompoundCurve

Figure 2: SQL Type Hierarchy

The major differences between the SQL type hierarchy and the OGC geometry class
hierarchy are the omission of the derived types Line and LinearRing, and the addition

2SQL/Temporal was not any further developed and, like SQL/MM Part, subsequently withdrawn completely.
3t is implementation-defined whether ST_MultiCurve and ST MultiSurface are instantiable or not, even
though they are shown as not-instantiable in figure 2.

of a series of types. Lines and linear rings are to be represented using values of type
ST_LineString, which covers both cases. The new types extend the OGC geometry class
hierarchy with circular arcs as curves and surfaces that have circular arcs as their bound-
ary. Furthermore, the aggregations that reflect which types are used by other types are
not shown. For example, it is not obvious from the SQL type hierarchy that the type
ST_MultiPoint consists of ST_Point values.

ST_Point values are O-dimensional geometries and represent only a single location. Each
point consists of an X and a Y coordinate to identify the location in the respective spatial
reference system. Points can be used to model small real-world objects like lamp posts or
wells. ST_MultiPoint values stand for a collection of single points. The points in a multi-
point do not necessarily have to be distinct points. That means a multi-point supports sets
as in the strict mathematical sense, but also allows for multi-set like SQL does in general.

Curves are 1-dimensional geometries. The standard distingiushes between ST _LineString,
ST_CircularString, and ST_CompoundCurve. An ST_LineString is defined by a sequence
of points, (X,Y) pairs, which define the reference points of the line string. Linear in-
terpolation between the reference points defines the resulting linestring. That means, two
consecutive points define a line segment in the linear string. Circular instead of linear
interpolation is used for ST_CircularString values. Each circular arc segment consists of
three points. The first point defines the start point of the arc, the second is any point on
the arc, other than the start or end point, and the third point is the end point of the arc.
If there is more than one arc in the circular string, the end point of one arc acts as the
start point of the next arc. A combination of linear and circular strings can be modeled
using the ST_CompoundCurve type. Line segments and circular segments can be con-
catenated into a single curve. ST_MultiCurve values represent a multi-set of ST_Curve,
and ST_MultiLineString a multi-set of ST_LineString values. Note that there are no types
ST_MultiCircularString and ST_MultiCompoundString. Figure 3 illustrates some exam-
ples of the three different types of curves.

Sl
W

(a) Linear Strings (b) Circular Strings (c) Compounds

Figure 3: Examples of Curves

Surfaces, as 2-dimensional geometries, are defined in the same way as curves using a
sequence of points. The boundary of each surface is a curve, or a set of curves if the
surface has any holes in it. The boundary of a surface consists of a set of rings, where each
ring is a curve. The type ST_CurvePolygon stands for such a generalized surface, and the
subtype ST_Polygon restricts the conditions for the rings of the boundary to linear strings.
The types ST_MultiSurface and ST _MultiPolygon are used to model sets of curve polygons
or polygons with linear boundaries.* A curve polygon and a polygon with linear strings as
its boundary are shown in figure 4.

(a) Curve Polygon (b) Polygon

Figure 4: Examples of Polygons

The type hierarchy does not address the concept of empty geometries in form of a separate
type under ST_Geometry. An empty geometry represent an empty set of points, and it can
be the result of the intersection of two disjoint polygons. The standard allows that a value
of each of the instantiable types can be an empty geometry. Thus, empty points, empty
linestrings, empty polygons, and empty geometry collections etc. exist. If a method has
the return an empty geometry as its result and the most specific type is not inherent by the
method, then an empty point is generated. Implicit or explicit casts can be used to convert
empty geometries from one type to another.

2.3 Methods

The majority of all spatial methods can be grouped into one of the following four cate-
gories:

e convert between geometries and external data formats,
e retrieve properties or measures from a geometry,

e compare two geometries with respect to their spatial relation,

4ST_MultiSurface constrains its values to contain only disjoint surfaces.

e generate new geometries from others

Examples and descriptions for each of the categories are given in this section. Sometimes,
it is not trivial to assign a spatial method to only a single category. For instance, the
method ST_StartPoint, which returns the first point of a linestring, retrieves a property of
the linestring, i.e. the first point, but it also generates a new geometry, i.e. an ST_Point
value.

2.3.1 Convert to and from External Data Formats

The SQL/MM standard defines three external data formats that can be used to represent
geometries in an implementation-independent fashion.

e well-known text representation (WKT)
e well-known binary representation (WKB)

e geography markup language (GML)

Each type implements constructor methods that allow to generate a new geometry from
the given WKT or WKB and the, optionally, provided numeric spatial reference system
identifier. All instantiable types have such constructor methods. There are no constructor
methods that cope with the GML representation. Functions like ST_LineFromGML or
ST_MPointFromGML are used instead.

For backward compatibility, the standard also defines functions like ST_PointFromText or
ST_GeometryFromWKB with exactly the same purpose as the constructor methods. Those
functions were inherited from and remain for compatibility with the OpenGIS Simple
Feature Specification for SQL [OGC99]. The constructor methods were introduced later
in the process of the standard development to align part 3 of SQL/MM with other parts,
and also to improve the overall usability of the constructors.

The three methods ST _AsText, ST_AsBinary, and ST_AsGML are provided for the conver-
sion of a geometry to the respective external data format.

2.3.2 Retrieve Properties

All geometries have certain properties. A property is, for example, the dimension or if
a geometry is empty. Each of the subtypes adds further, more specific properties, for
example, the area of a polygon or whether a curve is simple’. A set of method was defined
to query those properties. Due to the high number of available methods, only a small set
of examples is given here.

ST _Boundary return the boundary of a geometry

5 A simple curve is defined to be not self-intersecting.

ST IsValid test whether a geometry is valid, i.e. correctly defined; an invalid geometry
could be a not-closed polygon

ST_IsEmpty test whether a geometry is empty
ST_X return the X coordinate of a point
ST IsRing test whether a curve is a ring, i. e. the curve is closed and simple

ST _Length return the length for a linestring or multi-linestring

2.3.3 Compare Two Geometries

A very interesting part in spatial queries comes from the comparison of geometries. Ques-
tions like “which buildings are in a flood zone” or “where are intersections of rail roads
and streets” can only be answered if the geometries representing the buildings, flood zones,
rail roads, and streets are compared with each other.

The standard defines the following set of methods to compare geometries in various ways.
ST _Equals test the spatial equality of two geometry
ST Disjoint test whether two geometries do not intersect

ST _Intersects, ST_Crosses, and ST_Overlaps test whether the interiors of the geometries
intersect

ST _Touches test whether two geometries touch at their boundaries, but do not intersect in
their interiors

ST _Within and ST _Contains test whether one geometry is fully within the other

All of the above methods return an INTEGER value, which is 1 (one) if the spatial relation
does exist, and O (zero) otherwise.

Additionally, the method ST_Distance exists, which quantifies the spatial relationship of
two geometries according to their distance.

2.3.4 Generate New Geometries

The last set of methods allows the user to generate new geometries from existing ones.
A newly generated geometry can be the result of a set operation on the set of points rep-
resented by each geometry, or it can be calculated by some algorithm applied to a single
geometry. The following methods are examples for both.

ST _Buffer generate a buffer at a specific distance around the given geometry
ST_ConvexHull compute the convex hull for a geometry

ST Difference, ST Intersection, and ST _Union construct the difference, intersection, or
union between the point sets defined by two geometries

2.4 Discussion

An observation of the type hierarchy as defined by the SQL/MM standard raises several
questions on the design decisions that were made.

24.1 OGC Geometry Model

The OGC geometry class hierarchy attempts to implement the composite design pattern
[GHIV95] by adding the class Collection. Without the subclasses under Collection and
an additional aggregation of Geometry, the pattern would fit exactly. A simplification
of the type hierarchy could have been achieved with the omission of all the subclasses
of Collection without any loss of functionality. All the methods that are defined on the
subclasses of Collection have the same simple logic. The same method is called for each
element (also called part) of the collection, and the results are combined.

Another drawback of this way of modeling the classes is that a future extension of the
geometry model requires the handling of the new geometries in two different places. First,
the new class has to be added under Geometry, and second, a corresponding class has to
be added for sets of such a geometry under Collection.

2.4.2 SQL Type Hierarchy

A different picture shows the implementation of the OGC geometry class hierarchy as
the SQL/MM type hierarchy. SQL is a set-oriented language. An important goal of a
standard should be the usability of the functionality defined. Iterating over the elements
of a collection as discussed above is, although possible, not as simple in SQL. A dynamic
compound statement or a recursive query has to be used for the iteration. The respective
method on the element of a collection has to be invoked during the iteration, and the results
are to be combined. Leaving that task up to the user will only lead to the user defining
those functions himself to prevent the repetition of that task.

Furthermore, consider the following typical user scenario: The SQL query is supposed to
return all the parts of the geometries in column spatial_column that fall into a certain
rectangle. The rectangle in question is represented using a polygon.

SELECT ST_Intersection (ST_Polygon (
"polygon((10 10, 10 20, 20 20, 20 10,
10 10)), 1), spatial_column)
FROM spatial_table
WHERE

Assuming that the column contains values of type ST -MultiPoint, the results of the query
can contain any of the following for each row:

e an empty geometry (empty point)

e asingle point

e multi-points

In the above query, the results can be retrieved and visualized on the screen. Further
processing the results in an SQL statement is, however, not completely trivial. Because
ST_Point and ST_MultiPoint are in two independent subtrees of the type hierarchy, only the
methods available on the common ancestor ST_Geometry can be used. A conversion of the
single points to multi-points with only a single element is not supported by the standard.
It only supports the conversion of empty geometries from one type to another.

A solution to address this issue might be to set the types ST_Point and ST _MultiPoint in
direct relationship by using inheritance. Interpreting that in the context of the SQL type
hierarchy gives: ST_MultiPoint is a specialized ST_GeomCollection, which only contains
points, and ST_Point is a specialized ST_MultiPoint, consisting of only a single point. A
similary approach can be implemented for the other types, which are not in the subtree
under ST_GeomCollection. Figure 5 shows how such a type hierarchy could be defined.

ST_Geometry

A

o

ST-MultiSurface ST MultiCurve ST_MultiPoint
ST_MultiPolygon ST_MultiCircString ST_MultiLineString ST_Point
ST_Polygon ST_CircularString ST _LineString

Figure 5: Modified Type Hierarchy

A similar idea was apparently the bases for the type hierarchy implemented in the Spa-
tialWare DataBlade for IDS product [Map02]. The DB2 Spatial Extender defines a type
hierarchy exactly as in the standard, but it omits some of the optional data types [IBMO02].
And yet a third approach to handle geometries stems from the Oracle 97 Spatial product
[Ora01]. It does not attempt to model a type hierarchy to reflect more specific properties
of the different kinds of geometries but uses a single type SDO_Geometry instead. No

support for strong typing based on the geometries can be enforced in such an environment,
but other means have to be used.

2.4.3 Methods on the Geometry Types

The SQL/MM standard provides a rich set of methods and functions. But it can be noted
that some additions and changes would result in a further improvement.

The standard defines constructor methods that can handle well-known text (WKT) and
well-known binary (WKB) representations. It does not allow for a handling of the GML
representation in a constructor, however. The existing constructor methods for the well-
known text representation could be reused for that, given that WKT and GML are both
a textual representation for geometries and can easily be distinguished be analyzing the
very first non-whitespace character. The functions like ST_PolyFromGML could then be
removed. They are not defined in the OGC Simple Feature specification, so that compati-
bility issues do not arise.

A set of functions allows the user to construct any geometry using one of the external data
formats. Those functions act like factory functions and are named ST_GeomFromText,
ST_GeomFromWKB, and ST-GeomFromGML. Instead of using the explicit names to de-
note the format handled by each function, an approach similar to the constructor methods
is preferrable. An overloaded function ST_Geometry can be defined with the same se-
mantical behaviour as the existing functions. Note that constructor methods on the type
ST_Geometry cannot be used because that type is not instantiable.

There are several groups of methods that provide (nearly) identical functionality. For
example, the methods ST _Intersects, ST_Crosses, and ST-Overlaps all test for intersections
of the interiors of the two input geometries. The only difference between the methods is
that ST_Crosses does not allow to test if a surface intersects some other geometry, or if
some other geometry intersects a point. ST_Overlaps requires that both geometries to be
compared have the same dimension. For example, a line can overlap another line but not a
polygon. ST Intersects is the generalized version of the functionality to test for the overlay
of geometries. It does not impose any restrictions in its input parameters. The existence of
ST_Crosses and ST_Overlaps is rather questionable.

Another omission can be found in the support for external data formats. The de-facto in-
dustry standard to represent geometries is the so-called shape format [ESR97]. The shape
format is not supported by the standard, but it should be considered given that existing
major products already support it [[BM02, IBMO1].

3 User scenarios

Two user scenarios for spatial functionality as defined in the standard as shown in this
section. The first scenario given in section 3.1. The second scenario describes how a bank
can manage its customers and make decisions on the placement of new branches can be
found in section 3.2.

3.1 Insurance Company

After a recent flooding, an insurance company wants to correct the information about
insured buildings that are in the flood zone, and pose an increased risk for the company.
The database contains one table rivers that contains the rivers and their flood zones and
another table buildings with the data for the buildings of all the policy holders.

rivers (name, water_amount, river_line, flood_zones)
buildings (customer_name, street, city, zip, ground_plot)

The column river_line contain the linstrings that represent all the rivers in the coun-
try. Related to that the column flood_zones shows the floodzones for each river. The
ground plot of the customer’s building is stored in the column ground_plot. The tables
for the above shown relational model can be created with the following SQL statements.

CREATE TABLE rivers (

name VARCHAR (30) PRIMARY KEY,
water_amount DOUBLE PRECISION,
river_line ST_LineString,

flood_zones ST_MultiPolygon)

CREATE TABLE buildings (

customer_name VARCHAR (50) PRIMARY KEY,
street VARCHAR (50) ,
city VARCHAR (20),
zip VARCHAR (10),
ground_plot ST_Polygon)

The first task is to update the information about the flood zones. The flood zones for the
river “FLOOD” is to be extended by 2 kilometers in each direction. The method ST _Buffer
is used in the following SQL statement to extend the flood zones by the specified radius.

UPDATE rivers
SET flood_zones =

flood_zones.ST _Buffer (2, "KILOMETER’)
WHERE name = ’'FLOOD’

In the next step, the company wants to find all the customers that are now in the extended
flood zone for the river. An SQL statement involving the spatial method ST_Overlaps can
be used to to find all those buildings.

SELECT customer_name, street, city, zip
FROM buildings AS b, rivers AS r
WHERE b.ground_plot.ST_Within(r.flood_zones) = 1

The so retrieved addresses can be further processed, and the customers can be informed of
any changes to their policy or other information.

3.2 Banking

A bank manages its customers and branches. Each customer can have one or more ac-
counts, and each account is managed by a branch of the bank. To improve the quality
of services, the bank performs an analysis of its customers, which also involves a spatial
component, the locations of the customer’s homes and the branches. The tables in the
bank’s data base have the following definition.

CREATE TABLE customers (
customer_id INTEGER
PRIMARY KEY,

CREATE TABLE branches (
branch_id INTEGER
PRIMARY KEY,

name VARCHAR (20), name VARCHAR(12),
street VARCHAR (25), manager VARCHAR (20),
city VARCHAR (10), street VARCHAR (20),
state VARCHAR (2), city VARCHAR(10),
zip VARCHAR (5), state VARCHAR (2),
type VARCHAR (10), zip VARCHAR (5),
location ST_Point); location ST_Point,
zone ST_Polygon) ;

CREATE TABLE accounts (

account_id INTEGER PRIMARY KEY,
routing_no INTEGER NOT NULL,
customer_id INTEGER NOT NULL,
branch_id INTEGER NOT NULL,

type VARCHAR (10) NOT NULL,
balance DECIMAL (14, 2) NOT NULL,

CONSTRAINT fk_customers FOREIGN KEY (customer_id)
REFERENCES customers (customer_id),

CONSTRAINT fk_branches FOREIGN KEY (branch_id)
REFERENCES branches (branch_id));

The first query determines all customers with an account balance larger than $10,000.- in
any of the accounts and who live more than 20 miles away from their branch.

SELECT DISTINCT c.customer_id, c.name

FROM customers AS c¢ JOIN accounts AS a ON
(c.customer_id = a.customer_id)

WHERE a.balance > 10000 AND

a.location.ST_Distance (
(SELECT b.location
FROM branches
WHERE Db.branch_id = a.branch_id),
"MILES’") > 20

The bank wants to find all the portions of the assigned sales zones of the branches that
overlap. It is not intended to have more than one branch assigned to a certain area, and
any duplicates are to be found and corrected. The query retrieves the identifiers for each
two branches that have an overlap in the zones and also the overlapping area, encoded in
the well-known text representation.

SELECT bl.branch_id, b2.branch_id,
bl.zone.ST_Overlaps (b2.zone) .ST_AsText ()
FROM branches AS bl JOIN branches AS b2 ON
(bl.branch_id < b2.branch_id)
WHERE Dbl.zone.ST_Overlaps (b2.zone).ST_IsEmpty () = 0

To reduce competition amoungst the branches for its own customers, the bank wants to
find all the customers that live within a 10 mile radius of a branch, which does not manage
their accounts. The accounts are to be transferred to a closer branch if the customer agrees.

SELECT c.name, c.phone, b.branch_id
FROM branches AS b, customers AS c
WHERE b.location.ST _Buffer (10, 'MILES’).
ST_Contains(c.location) = 1 AND
NOT EXISTS (
SELECT 1
FROM accounts AS a
WHERE a.customer_id = c.customer_id AND
a.branch_id = b.branch_id)

4 Information Schema

SQL/MM Part 3: Spatial defines an Information Schema to provide an application that uses
the spatial extension with a mechanism to determine the supported and available features.
The Information Schema consists of four views, which are explained here, after a short
introduction on the history.

4.1 History

The SQL/MM Information Schema was also inherited from the OGC Simple Feature
Specification for SQL [OGC99]. The OGC specification used ad still uses the views
GEOMETRY_COLUMNS and SPATIAL_REF_SYS with a different set of columns and dif-
ferent semantics of the data shown in the view.

The OGC specification describes two completely different concepts, called environments,
that can be used for the implementation of a spatial extension for a database system,
based on whether structured types, so-called ADTs, are supported or not. The Information

Schema for the environment without structured types is more complex because additional
information has to be maintained.

For the second environment that exploits the structured type support, which is in align-
ment with the SQL/MM standard, the OGC specification refers in the description for the
GEOMETRY_COLUMNS view only back to the other environment and states: “the columns
in the GEOMETRY _COLUMNS metadata view for the SQL92 with Geometry Types en-
virconment are a subset of the columns in the GEOMETRY _COLUMNS view defined for
the SQL92 environment.” It is not exactly clear what the subset is supposed to be.

The original Information Schema defined in the SQL/MM standard was based on those
information. For example, the view GEOMETRY_COLUMNS included a column named
COORD_DIMENSION, which has no well-defined meaning when storing arbitrary geome-
tries on a spatial column. The original views were replaced by a new definition of the
Information Schema in the second edition of the SQL/MM standard. The following sec-
tions refer to the newly introduced views.

4.2 SQL/MM Spatial Information Schema

The Spatial Information Schema consists of 4 views that list the spatial columns, the sup-
ported spatial reference systems, the units of measure, and the implementation-defined
meta-variables. The entity-relation-ship diagram in figure 6 shows those views and also
their relationship to the views defined in the Information Schema in [ISO99].

‘ is associ

ST_.GEOMETRY_ ST_SPATIAL_REFE-
COLUMNS RENCE_SYSTEMS
ST_UNITS_OF_
MEASURE
COLUMNS (SQL99) ST_SIZINGS

Figure 6: Spatial Information Schema

ST_GEOMETRY_COLUMNS The view lists all columns in all tables that have a de-
clared type of ST_Geometry or one of its subtypes. It is not necessary to associate a specific
spatial reference system with a column, but an application can do so. The view shows the

column identifier, consisting of catalog, schema, table, and column name, and the identi-
fying name and the numeric identifier of the spatial reference system associated with the
column.

The view is written in such a way to query the view COLUMNS from the SQL Information
Schema to retrieve the infermation about all existing spatial columns and then merges the
SRS information for each of the columns that has an associated spatial reference system
using an outer join.

ST_SPATIAL_REFERENCE_SYSTEMS A spatial reference system has two unique
identifiers, a name and a numeric identifier. The name is used in the same way as for all
other SQL objects like schemata, functions, or columns. The numeric identifier is used in
the methods that require the SRS information as input, for instance to construct a geometry
in a specific SRS or to transform a geometry to another SRS.

Along with the identifiers, the view represents the organization that defined this spatial
reference system together with the identifier assigned by that organization and the actual
definition of the SRS.

ST_UNITS_OF MEASURE Different units can be used to calculate distances between
geometries, the length of curves, or the area of surfaces. The view lists those units that are
supported. An identifying name, the type of the unit (angular or linear), and the conversion
factor to the base unit within each type is stored. The conversion factor for the base units
in each type are always 1 (one).

ST_SIZINGS Similar to the SQL99 Information Schema view STZINGS, the SQL/MM
standard requires that an implementation creates a view ST_SIZINGS. This view contains
the spatial-specific meta-variables and their values. An example of a meta-variable is
the maximum possible length that can be used for a well-known text representation of a
geometry. This meta-variable is called ST_MaxGeometryAsText.

4.3 Discussion

Two views in the Information Schema should be reconsidered because their current defi-
nition is not adequate. First, the view ST_SPATIAL_REFERENCE_SYSTEMS uses a very
simplified way to manage spatial reference systems. The European Petrol Survey Group
(EPSG) worked on a more expressive schema for spatial reference systems, which is also
described in another ISO standard [ISO02b], although in a different context.

The view ST_SIZINGS has the same intention as the view STZINGS defined in SQL99
[ISO99], only specialized for the facilities in SQL/MM Spatial. If SQL99 would provide a
mechanism for implementations of other standards, including SQL/MM to add new entries
to its view, then ST_SIZ INGS becomes obsolete and could be removed from the SQL/MM

standard. Unfortunately, SQL99 does not describe the requested mechanisms, so both
views are still necessary.

S Summary and Outlook

SQL/MM Part 3: Spatial standardizes the storing, retrieving and processing of spatial
data as part of a relational database system. It defines a set of types and methods for the
representation of 0, 1, or 2-dimensional geographic features.

The SQL/MM standard is expected to be published in its second version in the near future.
The second version shows improvements for the Information Schema and adds the support
for the Geography Markup Language (GML) and angles and directions. It also defines
many functions in a more precise manner.

This paper described the facilities defined in the standard, and discussed them critically.
The implemented type hierarchy is suitable for its purpose, but together with the strong
typing and the set-oriented data management imposed be SQL, it inconveniences the spa-
tial data processing. The methods provided for each type cover a wide range of spatial
functionality. The multitude of methods lead to the situation where functionality is al-
ready duplicated (with very minor differences).

Some future directions of the SQL/MM Spatial standard already show in the new working
draft that was started recently and will eventually become the third version of the stan-
dard. The Japanese standards committee supplied a change proposal that adds a function
ST_ShortestPath, which calculates the shortest path in a network (or graph) of linestrings
between two given points.

Additional functionality that implements more spatial oriented logic could be included as
well in the future. For example, a function ST_Nearest to find for a given geometry the
nearest one from another set of geometries is desirable. The user cousd exploit it to get the
answers to questions like “find me the closest restaurant to my current location”.

The support for modification of geometries directly in the database system using spatial
methods can be extended. There are no simple functions to change a point in a linestring,
or to generalize geometries if it is too detailed, i.e. too many points are used to define
it. Existing products already support methods like SE_ChangeVertex or SE_Generalize
[IBMO1].

Open questions also remain with respect to other SQL standards. For example, the In-
formation Schema defined in the SQL/MM Spatial standard contains information about
the spatial reference systems applicable for geometries stored in the same database as the
Information Schema. The access to external data stores using SQL/MED [ISO00] is not
considered today.

The support for raster data, for example huge images taken for whole countries, imposes
special requirements on a spatial database. Geographical Information Systems (GIS) rely
on raster data to provide additional information for the user. The current SQL/MM stan-
dard does not consider raster data at all, and the needed infrastructure should be defined.

Literaturverzeichnis

[ESR97]

[GHIV95]

[IBMOI]

[IBMO02]

[ISO99]

[ISO00]

[ISOO01]

[ISO02a]
[ISO02b]

[ISO02c]

[Map02]
[OGCY9]

[Ora01]
[RAO1]

[SWCD97]

[SWCD98]

[TIS97]

Environmental Systems Research Institute, Inc. ESRI Shapefile Technical Description,
1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidis. Design Patterns — Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

International Business Machines, Corp. Informix Spatial DataBlade, Version 8.11,
2001.

International Business Machines, Corp. DB2 Spatial Extender — User’s Guide and
Reference, Version 8.1, 2002.

ISO/IEC 9075-2:1999. Information Technology — Database Languages — SQL — Part 2:
Foundation (SQL/Foundation), 1999.

ISO/IEC 9075-9:2000. Information Technology — Database Languages — SQL — Part 9:
SQL/MED, 2000.

ISO/IEC 9075-2:2001 WD. Information Technology — Database Languages — SQL —
Part 7: Temporal (SQL/Foundation), 2001.

ISO/DIS 19107:2002. Geographic Information - Spatial Schema, 2002.

ISO/DIS 19111:2002. Geographic Information - Spatial Referencing by Coordinates,
2002.

ISO/IEC 13249-3:2002 FDIS. Information technology — Database languages — SQL
Multimedia and Application Packages — Part 3: Spatial, 2nd edition, 2002.

Maplnfo, Corp. MaplInfo SpatialWare — User’s Guide, Version 4.5, 2002.

OpenGIS Consortium. OpenGIS Simple Features Specification for SOL, Revision 1.1,
1999.

Oracle, Corp. Oracle Spatial User’s Guide and Reference, Release 9.0.1, 2001.

K. H. Ryu and Y. A. Ahn. Application of Moving Objects and Spatiotemporal Reason-
ing. Technical report, TimeCenter, 2001.

P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Ob-
jects. In Proceedings of the Thirteenth International Conference on Data Engineering
(ICDEI3), Birmingham, UK, 1997.

P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Temporal Databases: Research
and Practice, chapter Querying the Uncertain Position of Moving Objects. Springer-
Verlage, 1998.

V. J. Tsotras, C. S. Jensen, and R. T. Snodgrass. A Notation for Spatiotemporal Queries.
Technical report, TimeCenter, 1997.

