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D-23562 Lübeck, Germany
email: kempa linnemann @ifis.uni-luebeck.de

Abstract: XML is the upcoming standard for internet data. Java is the most important
programming language for internet applications. Nevertheless, in today’s languages
and tools there is no smooth integration of Java and XML. The XML OBjEcts project
(XOBE) at the University of Lübeck addresses this mismatch by defining XML ob-
jects by XML schemas and by making them to first-class data values. In XOBE, the
distinction between XML documents and XML objects no longer exists. Instead, a
running XOBE program works only with XML objects. XML documents in text form
with explicit tags exist only for communicating with the outside world. This approach
allows to check the validity of all XML objects within a program statically at compile
time. This is accomplished by XML constructors. Previously generated XML ob-
jects are inserted in these constructors such that the validity can be checked at compile
time. This paper concentrates on the type checking algorithm in XOBE which is used,
among others, for checking the correctness of assignment statements involving XML
objects. The type checking algorithm assures that all XML objects that can occur dy-
namically on the right hand side of an assignment statement are objects that can be
assigned to the variable on the left hand side. This type checking is done statically
without running the program. The algorithm is based upon regular hedge grammars
and regular hedge expressions.

1 Introduction

In the last years the Extensible Markup Language (XML) [W3C98b] has become the stan-
dard data format of the Internet. Many different XML-based markup languages have been
developed, the usages of which range from publishing documents on web sites to the ex-
change of data. Committees like the World Wide Web Consortium (W3C) enforce the
process of developing XML-related standards, like XPointer, XPath, XSLT, XQuery and
software vendors introduce XML-based tools or extend their current products to be acces-
sible via XML. Recently the concept of web services realizing software components over
the Internet instead of stand alone web applications became popular.

Today, the implementation of most web applications and web services is realized by stan-
dard programming languages like Java [AG98] or Visual Basic. Modern web applications
and web services generate XML structures intensively. The content of these dynamic



structures is assembled at run time, in contrast to static web pages, which do not change
at run time. For the creation of dynamically generated structures technologies like CGI
[Gai95], Java Servlets [Wil99], Java Server Pages [PLC99, FK00] or JAXB [Sun01] are
used.

Using these technologies guarantees the correctness of dynamically generated structures
only to a very limited extend. XML structures should not only be well-formed, but should
also be valid according to an underlying DTD [ABS00] or XML schema [W3C01b], which
we call schema in the following, defining the used markup language. Instead, the validity
must be “proven” dynamically by appropriate test runs. Moreover, some techniques dif-
ferentiate between XML strings and XML objects requiring to switch between these two
notions by methods called marshalling and unmarshalling. This leads to a serious mis-
match between objects in an object oriented programming language and XML structures.

The XML OBjEcts project (XOBE) [LK02] overcomes the differences between XML
structures as strings and corresponding objects by an extension of the object oriented pro-
gramming language Java. In other words, when using XML syntax in XOBE, it always
denotes XML objects, i.e. generating and analyzing XML is done conceptually only on
the basis of objects. Therefore XOBE introduces a class for every element type of a used
schema, but does not generate these classes explicitly as Java classes. Instead of that they
can be used like built-in data types. They are defined in such a way that the generation of
XML objects is done in a syntax oriented manner allowing to check most portions of the
property validity, which we call static validity, of all generated XML structures, i.e. XML
objects, at compile time.

The present paper focuses on the XOBE type system. The main problem of the XOBE
type system is in deciding if an XML object is allowed at the position it appears. This
decision problem for subtyping is algorithmically difficult. We introduce an algorithm
which checks the subtype relationship of XML objects. The algorithm can be viewed as an
improvement of Antimirov’s algorithms for the decision problem of regular expressions.
Even on XOBE applications that involve quite large types, such as the complete schema
of XHTML, our algorithm completes in reasonable time.

Our algorithm enables XOBE to guarantee static validity at compile time which implies
the following advantages:

1. XOBE programs are more efficient because we avoid expensive run time checks to
guarantee validity.

2. XOBE programs are more reliable because we can omit the programming of recov-
ery procedures which are needed if run time checks fail.

3. XOBE enables a faster development of implementations, because we can avoid ex-
tensive test runs, which are necessary to make the validity of the generated XML
documents feasible.

4. XOBE improves the maintenance of web services and web applications because it
leads to a simpler source code structure.



The paper is organized as follows. In the next section, we give an introduction to the
programming with XML objects. In Section 3, we describe the connection between XML
objects and regular hedge expressions and introduce subtyping. In Section 4, we present
our subtyping algorithm, the main part of the paper. Section 5 explains our implementation
techniques and Section 6 discusses some performance measurements. We survey related
work in Section 7, i.e. we summarize the state of the art of programming web applications
and web services. Section 8 concludes the paper and gives an outlook on future work.

2 XML Objects

In this section we introduce the syntax and semantics of XML Objects (XOBE) briefly.
A more detailed introduction can be found in [KL02]. XOBE extends the object-oriented
programming language Java by a compile time validation mechanism for dynamically
generated XML structures.

Constructing XML Objects

XML structures, which are trees corresponding to a given schema, are represented by XML
objects in XOBE. Therefore XML objects are first-class data values that may be passed
and stored like any other data values. The given schema is used to type different XML
objects.

XOBE programs import schema definitions, declared by an import statement ximport,
to use XML objects in the source code. The schema SIF is imported with “ximport
SIF.xsd;” for example. The classes of these objects are not generated explicitly as Java
source code. In fact the element declarations and type definitions in the imported schema
define the available classes directly. Every element declaration and every type definition in
the schema corresponds to an implicit XML object class. In other words, this means that
XML objects are instances of an element declaration or a type definition of an imported
schema. Therefore XML objects are XML structures having the corresponding element or
elements as the root node.

New XML objects can be created in XOBE programs by expressions which we call XML
constructors. These expressions are denoted in valid XML syntax where other XML ob-
jects can be inserted in places which are allowed according to the imported schema. These
values are separated from the surrounding XML syntax by braces.

With the concept of XML objects there is no distinction between the string representation
and the object representation of XML structures in XOBE. Thus XML structures in a
program always denote objects. Using only XML objects guarantees the property well-
formedness as well as static validity for the dynamically generated XML objects at compile
time.

We will explain our concepts by the following running example. A web service imple-
menting a shopping application communicates with the outside world using an XML data
format. The data format called Shop Interchange Format (SIF) is given in Appendix A.



Our examples focus on the class Cart depicted in Figure 1. The class has a member field

Cart
+accountNr: int
+articles: List
+addArticle(articleNr:int): shopResponse
+removeArticle(articleNr:int): shopResponse
+getArticles(): shopResponse

Figure 1: Class Cart

accountNr of type int which identifies the customer to which this cart belongs and a
member field articles of class List saving already selected items. Further, the class
has the three methods addArticle, removeArticle, and getArticles. They
make it possible to add and remove certain articles and to display already selected articles.

The following XOBE method generates an SIF shopResponse-object containing the
account number being taken from the member field accountNr.

s hopRes pons e r e m o v e A r t i c l e ( i n t a r t i c l e N r )
r e q u e s t done ;
s hopRes pons e r e s p o n s e ;
i f ( t h i s . a r t i c l e s . remove ( a r t i c l e N r ) )

done = r e q u e s t p r o c e s s e d / r e q u e s t ;
e l s e

done = r e q u e s t f a i l / r e q u e s t ;
r e s p o n s e = shopResponse s h o p p i n g C a r t

accoun t t h i s . a ccoun tNr / accoun t
done

/ s h o p p i n g C a r t /shopResponse ;
re turn r e s p o n s e ;

/ / r e m o v e A r t i c l e

Listing 1: Method removeArticle

We allow int-values in places where String-values are expected according to the un-
derlying schema. The int-value is converted automatically to its decimal notation as a
String-value by calling method toString. It should be obvious that method re-
moveArticle is guaranteed statically to generate valid SIF.

A XOBE program generates XML only by XML constructors, i.e. there is no string rep-
resentation during generation. String generation is necessary only when the document is
communicated to the outside world, for example as the result of a Java servlet. Only for
this purpose a method toString is provided for XML objects.

Although XOBE can ensure most predicates of the property validity statically, runtime
checks are necessary in some exceptions. Similar to an array of constant length, where the
index has to be in the declared range, the number of occurrences of a specific element has
to be between the values set by the attributes minOccurs and maxOccurs in the defin-
ing schema. Additional runtime checks are necessary for identity constraints, restricted
string types and facets on numeric types.



Accessing XML Objects

XOBE incorporates XPath [W3C99] for accessing XML objects in XOBE programs.
XPath provides a mechanism to express path expressions extracting some nodes in an
XML structure. A path expression in general consists of a location path, selecting sub-
nodes of a given context node. An additional node test restricts the selected nodes to
specified element names. Further restrictions can be performed with optional predicates.
In XOBE, the context node is denoted by an XML object variable. XPath expressions in
XOBE return a list of nodes, which is regarded as an XML object.

Listing 2 shows the implementation of method processRequest processing an incom-
ing shop request. The request is passed to the addressed cart, which returns the resulting
response. Note that a global variable allCarts is used which gives access to all regis-
tered Cart-objects.

1 s hopRes pons e p r o c e s s R e q u e s t ( s hopReques t rq )
2 C a r t c ;
3 s hopReques t . s h o p p i n g C a r t s c ;
4 s c = rq / s hopReques t / s h o p p i n g C a r t [ 1 ] ;
5 c = a l l C a r t s . g e t ( s c / a c c o u n t [ 1 ] ) ;
6 i f ( s c / add . g e t L e n g t h ( ) = = 1 ) re turn c . a d d A r t i c l e ( s c / add [ 1 ] ) ;
7 e l s e i f ( s c / remove . g e t L e n g t h ( ) = = 1 ) re turn c . r e m o v e A r t i c l e ( s c / remove [ 1 ] ) ;
8 e l s e i f ( s c / g e t . g e t L e n g t h ( ) = = 1 ) re turn c . g e t A r t i c l e s ( ) ;
9 / / p r o c e s s R e q u e s t

Listing 2: Method processRequest

From the incoming request rq the method extracts the shopping cart and assigns it to
variable sc. Afterwards the targeted cart is chosen from the set of available carts all-
Carts. A nested conditional statement differentiates the three possible requests and calls
the suitable methods. The required parameters are gathered from the request.

In the method processRequest we use XPath constructs for accessing XML object
content. Using the path notations (4-8) it is possible to navigate through XML objects.
Because the XPath node test returns a list of resulting XML objects, we have to access the
first item of the sequence with the XPath integer predicate (4-7). We determine the size of
such a list using method getLength (6-8).

The impact of our approach on the host language Java is an XML consistent extension
of the type system. Because of the outstanding role of XML in the web application and
web services programming world, and maybe the whole software development world in
the future, this seems to be a consequent step. We believe that the trade-offs between the
extension of an existing programming language on one hand and the approach of defining
a new programming language around XML on the other are minimal. Instead the benefits
of using already developed code are significant.

3 Basic Definitions

As seen in the last section XOBE allows XML syntax in expressions, assignments and
method parameters. During compilation the XOBE system verifies the correctness of the



assignment in two steps. First it determines the types of the right and left hand sides using
type inference. Secondly, the subtype relationship of the inferred types is checked by a
subtyping algorithm.

In XOBE we formalize and represent types as regular hedge expressions representing reg-
ular hedge languages [BKMW01]. Consequently a schema is formalized and represented
internally by a regular hedge grammar.

Definition 1 (regular hedge grammar)
A regular hedge grammar is defined by with a set of terminal
symbols, consisting of simple type names and a set of element names (Tags), a set

of nonterminal symbols (names of groups and complex types), a start expression and
a set of rules or productions of the form with and is a regular hedge
expression over .

The rules in the production set have to fulfill the following two constraints: 1

1. Recursive nonterminals may appear in tail positions only.

2. Recursive nonterminals must be preceded by at least one non-nullable expression.

A non-nullable expression is a regular hedge expression which does not contain the empty
hedge.

We define the regular hedge expressions, referred to in short as regular expressions, similar
to the notation used in [W3C01a].

Definition 2 (regular hedge expression)
Given a set of terminal symbols and a set of nonterminal symbols, the set

of regular hedge expressions is defined recursively as follows:

the empty set,

the empty hedge,

the simple types,

the complex types,

the elements,

the regular union operation,

the concatenation operation, and

the Kleene star operation.

for all , , , .

As an example we formalize the schema SIF (Appendix A) introduced in the last section
as a regular hedge grammar as with:

integer string t request ,

shopRequest shopResponse shoppingCart account add

1The two constraints ensure regularity.



remove get request items article description ,

, and

shopRequest

shoppingCart

account integer

add integer

remove integer

get

shopResponse

shoppingCart

request t request

items

article integer

description string .23

As in XML Schema we do not demand that the set of element names and the set
of complex types have to be disjunct. In this paper we use different fonts to separate
element names from complex type names. Mixed content is formalized as a simple type
string. We deal with attributes similar to elements, but with a specially marked name,
rewriting them with regular hedge constructors. Any-types are rewritten to a regular union
of all declared element types as well.

As mentioned above XOBE infers at compile time both types of the right and left hand
sides of an assignment. Because all variables have to be declared, the type inference
of variables is simple. In our example of Listing 1 a variable done is declared of type

and a variable response of type . Based on the variable types,
the type of the whole XML constructor on the right hand side can be inferred. In our
example it is shopResponse shoppingCart account integer .

After inferring the types of the left and right hand sides, the XOBE type system checks
if the type of the right hand side is a subtype of the type of the left hand side. For this

2Because the comma ( ) is used as concatenation operation in regular expression, we use the semicolon ( ) as
separator in sets where regular expressions appear as elements.

3Element name shoppingCart has two different types which we have to distinguish.



example XOBE has to check the so-called regular inequality

shopResponse shoppingCart account integer

where stands for the subtype relationship. Note, that the name on the
right hand side stands for the complex type . The name shopResponse on
the left hand side is an element name.

4 Subtyping Algorithm

Checking the subtype relationship between two regular hedge expressions is the main
task in proving type correctness of XOBE programs. For this we adopt the Antimirov
algorithm [Ant94] for checking inequalities of regular expressions and extend it to the
hedge grammar case. The idea behind Antimirov’s algorithm is that for every invalid
regular inequality there exists at least one reduced inequality which is trivially inconsistent.
An inequality is trivially inconsistent if the empty hedge is in the language represented by
the regular expression on the left hand side but not in the language represented by the right
hand side regular expression.

The algorithm operates as follows: It takes the regular inequality to prove as argument and
retrieves the leading simple type names and element names from the left hand side regular
expression using operation leadingNames. The operation leading names is defined as
follows.

Definition 3 (leading names)
Given a regular expression the operation returns the set of all

leading terminal symbols:

with

if

if

with , , , .
It is defined recursively and returns the leading simple type names and element names. If
a complex type name occurs the operation uses the production definition. For a regular
concatenation the operation needs the predicate to check the empty hedge
inclusion.



For each determined name the algorithm tries to reduce both sides of the inequality by
this name. The resulting reduced inequalities are simpler than the starting inequality in
the majority of cases and can be checked by a recursive application of the algorithm.
The algorithm tracks already treated inequalities in a set of inequalities, which is empty
in the beginning. This ensures termination if we encounter the same inequality later on.
We do not prove subtyping directly, instead we calculate the set of all possible reduced
inequalities of the given inequality. If we receive a trivially inconsistent inequality we
conclude that the given inequality is incorrect. In all other cases we assume that the given
inequality holds. This is a standard proceeding in subtyping algorithms of recursive types.

There are two different results of our recursive algorithm. First the algorithm responds
false if the inequality in question is trivially inconsistent using the isNullable predi-
cate. Secondly, the algorithm terminates with true when it processes an inequality which
is in the set of already processed inequalities. This means that our algorithm cannot pro-
duce any new inequality in this branch of recursion. If there are still inequalities to derive,
the algorithm continues with the operation partialDerivatives which is explained
after the algorithm definition.

Definition 4 (subtyping algorithm)
Given a set of already processed inequalities the algorithm to prove is defined by
the following pseudo code:

boo l prove ( r s , A)
i f ( ( i s N u l l a b l e ( r ) && ˜ i s N u l l a b l e ( s ) ) s = = ) re turn f a l s e ;
e l s i f ( ( r s ) A) re turn true ;
e l s e

ok : = true ; pd : = ; ns : = lead ingNames ( r ) ;
f o r a l l ( n ns ) pd : = pd p a r t i a l D e r i v a t i v e s ( n , r s ) ;
A : = A r s ;
f o r a l l ( ( ) ( ) pd )

ok : = ok && ( prove ( ,A) prove ( ,A) ) ;
re turn ok ;
/ / e l s e

/ / p r ove

Listing 3: Subtyping Algorithm

Antimirov introduces so-called partial derivatives of regular expressions to express re-
duced regular expressions. A partial derivative reduces a regular expression by a given
type name or element name. In the hedge grammar setting we modify partial derivatives
concerning type names and element names. For example, if we have the regular expres-
sion account integer request t request and calculate its partial derivatives with respect
to the given element name account, we receive the result integer request t request .
The result is a set in general, because we can get multiple derivatives for a given regular
expression. The elements of the set are pairs corresponding to the two dimensions in a
regular hedge, the parent-child dimension and the sibling dimension. In the example the
first component of the pair is the type of the content of element account. The second is the
regular expression reduced by element account.

Additionally Antimirov introduces so-called partial derivatives of regular inequalities to
express reduced inequalities. In the hedge grammar case these become more complicated.
Because the partial derivatives of regular expressions are pairs we have to perform a set-



theoretic theorem observed by Hosoya, Vouillon and Pierce [HVP00].

Theorem 5 (subset relation on Cartesian product)
Given some sets , , , . . . , , , . . . , the following holds:

with and .

As we can see, this theorem reduces the subset relation on Cartesian products to a subset
relation on sets.

Because types can be interpreted as sets of values, we can write the following relation
emerging after reducing the left and right hand sides of an inequality by the leading name

with

for every . To this relation we can apply the given
theorem and receive

with and and

.

In the definition of the partial derivatives of regular inequalities we collect the disjunctions
separately in a set. Additionally we rewrite the relation using the regular expression op-
erators regular union instead of union on sets and inequality instead of subset on
sets .

Definition 6 (partial derivatives of regular inequality)
Given a regular inequality with and a terminal symbol the partial
derivatives of that inequality is defined as:

and



A partial derivative of a regular inequality is a set the elements of which have the form of
two inequalities connected with the boolean operation or. This means for our algorithm,
that we can apply our procedure prove recursively.

In the remaining section we apply our subtyping algorithm to a small example. Con-
sider the example where we have the two types account integer

and description string account integer which we
denote with and for a concise description. We want to check the regular inequality

in the following, for which we start the subtyping algorithm with an empty set of
inequalities .

In the first recursion the algorithm calculates the set of leading names description .
Additionally the set of already processed inequalities is enlarged to .
We get

string account integer

string account integer string

and Definition 6 leads to

string string string (1)

account integer (2)

string string (3)

account integer (4)

string string (5)

account integer account integer (6)

string (7)

account integer account integer . (8)

The inequalities 1, 3 and 5 evaluate trivially to true, while inequalities 2, 4, 6 do not hold.
Because inequality 7 is false, inequality 8 has to be checked in another recursion of our
algorithm.

Let be account integer and account integer for further
description. For proving inequality 8 the algorithm calculates the sets of leading names

account . Again the set of inequalities is enlarged to . The
following partial derivatives are generated during the algorithm:

integer integer (9)

(10)

integer (11)

. (12)

It is easy to see, that inequality 9 holds and inequalities 10 and 11 evaluate to false. The
last inequality 12 is true, because it is already in our set of already processed inequalities



. Finally the algorithm accepts as correct, because we did not derive
inconsistent inequalities in both branches of any disjunction.

To prove the correctness of the algorithm we use the set of all derivable inequalities, which
in fact is a family of sets, one set for every recursion branch. It can be shown, that an
inequality is not valid, if and only if all sets derivable from contain false.
Secondly it follows that after a finite number of steps each set of inequalities either contains
false or saturates. This property ensures termination. Compared to standard subtyping
based on regular tree automata which involves the computation of automata intersection
and automata complement, our algorithm is more efficient. Although our algorithm has
a potential exponential inefficiency as the automata procedure, there are cases where our
algorithm is exponentially faster.

5 Implementation Issues

The previous sections presented the representation of types in XOBE. We now describe
our XOBE implementation architecture [Kra02], which is shown in Figure 2. Although it

Java compiler

Java transformation

Type checking

XOBE Java parser

Java with DOM

XOBE preprocessor

XOBE program

XML schema

Figure 2: XOBE Java Architecture

is possible to integrate the functionality of XOBE into the Java compiler, we have chosen
to implement XOBE as a Java preprocessor. The XOBE preprocessor consists of the
following three components:

1. The XOBE parser,

2. the type checking analysis and

3. the transformation to standard Java code.

The XOBE parser reads the XOBE program and converts the XML portions of the pro-
gram to an internal representation. The parser includes in addition to a standard Java parser



a schema parser and a slightly modified XML parser. The schema parser is necessary to
scan the schemas imported by the XOBE program. The XML parser is needed to recog-
nize the XML constructors distributed over the program source code. Because the XML
constructors can include XML variables we have to modify the standard XML parser. In
our implementation we utilize the Java compiler compiler JavaCC [Web02] to generate
the XOBE parser. Additionally we use the XML parser Xerces [The01] to recognize the
used schemas. The internal representation of the processed XOBE program is done with
the Java tree builder JTB [TWP00].

In the type analysis phase the preprocessor determines whether the parsed program is
well-typed or not. Well-typed in XOBE means that the processed XML objects are valid
according to the declared schemas. At first the type analysis phase validates the imported
schemas. Afterwards, the type check of Java expressions using XML objects, like assign-
ments or method calls, is performed according to the description of the previous section.
The type inference of XML constructors and XML variables is followed by subtyping
proofs to verify the expressions. Because the type system of standard XML is strict and
can be formalized by restricted regular hedge expressions, we can use the regular hedge
grammar based algorithm to decide the equivalence of regular expressions for that purpose.
XML Schema weakens the strictness by introducing type extension and type restriction,
which requires a more sophisticated type inference strategy. The detailed description of
this extended algorithm will be introduced in thesis [Kem03].

The last task the preprocessor performs is the transformation of the XOBE program into
Java source code, which is accepted by the standard Java compiler. For this resulting Java
code several implementation alternatives exist, depending on the XML representation. We
chose the standard representation of the Document Object Model, or DOM [W3C98a],
recommended by the W3Consortium. The transformation replaces the XML constructors
and XPath expressions of the XOBE program with suitable DOM code. The exact trans-
formation rules will be presented in [Kem03]. Please note that even though DOM is an
untyped XML implementation not guaranteeing static validity, the transformed XML ob-
jects in the XOBE program are valid. This holds because our type checking algorithm
guarantees this property. In our implementation the transformation is performed on the
internal JTB representation, where we replace the subtrees representing XOBE constructs
by newly created subtrees, which represent the suitable DOM code.

6 Experimental Results

In this section we present some preliminary performance measurements of the XOBE
implementation. Our interests concerning the performance is twofold. First, we want to
know the time which is spent for precompiling XOBE programs and especially for the type
checking algorithm. Second, we measure the evaluation time of our resulting DOM-based
servlets which we compare to a standard non-DOM servlet implementation. The programs
are executed on a Sun Blade 1000 with two Ultra Sparc 3 (600 Mhz) processors running
Solaris 8 (SunOS 5.8).



Estate is a small program which generates XHTML web pages for an estate broker. Real
estates are stored in an XML file following a small non-standard schema. These
files are taken as input and converted into free-standing XHTML documents.

Login is a servlet which realizes the login for an academic exercise administration sys-
tem. It requests login and password and passes the input to the system.

MobileArchive is a servlet-based web application realizing a WML-connection to a med-
ical media archive. A navigation through the archive structure similar to a file sys-
tem tree is possible, in addition to a media search. Some media objects of specific
formats can be viewed as well.

The first application is written as several simple iterative methods, performing a straight-
forward traversal of the input tree. The second application communicates over JDBC with
an Informix database management system. The client input is passed to the database the
respond of which is wrapped into XHTML and sent to the client. The last application is a
WML connection to a media archive. The media archive is accessed through a given API.
The application memorizes the position of the actual client in the structure of the archive.

We use XHTML (more precise XHTML-transitional) as schema in programs Estate and
Login and WML in MobileArchive. The last two applications have been migrated from a
standard Java servlet implementation. Many silly mistakes in the non-XOBE implementa-
tion have been found doing this task. Despite careful test runs of the previous implemen-
tation, many mistakes have been overlooked.

lines of code compile time (s) execution time (s)
Application XOBE schema total subtyping standard XOBE

Estate 158 1231 2.16 0.05 - 0.9
Login 195 1196 4.61 0.07 0.01 0.01
MobileArchive 1045 355 4.49 0.16 0.03 0.04

In the table the number of lines of the whole XOBE programs and the number of lines
of the imported schemas is presented in the first two columns. In the second group of
columns the table shows the time spent for precompiling the XOBE program. It includes
the parsing, the type inference, the subtyping algorithm and the code transformation into
standard Java, as described in Section 5. The time spent during the subtyping algorithm is
shown in column “subtyping”. The third column group of the table gives an impression of
how the performance of the servlets is affected by the DOM-based implementation. The
column “standard” shows the time which has elapsed evaluating the standard non-XOBE
servlet implementation. The last column gives the running time of the XOBE program.

As indicated by the table our type checking algorithm runs at acceptable speed for these
applications. Even the applications which use quite large types from the XHTML or WML
schema are compiled in encouraging time. The execution speed of our DOM-based servlet
implementations is slower than the standard servlets as expected but still in a convenient
range.



7 Related Work

A number of approaches have been presented facilitating XML processing and generation
in existing programming languages. They mainly differ in managing the structure of XML
documents. Only a few similar ideas compared to our approach have been proposed.

String processing

The most elementary way to deal with XML documents is to use the string operations
which are provided by the programming language, i.e. XML documents are treated as or-
dinary strings without any structure. The most prominent representative of this technique is
given by Java Servlets [Wil99]. In former CGI scripts [Gai95] the programming language
Perl [WS92] was used. The technique is rather tedious, when constant XML fragments
are being generated. At compile time string operations neither guarantee well-formedness
nor static validity.

Java Server Pages [PLC99] are translated by a preprocessor into Java servlets. They al-
low to switch between XML parts and Java parts for generating XML documents. This
switching is done by special markings. Compared to string operations, this technique pro-
vides some progress especially when constant XML fragments are being generated. Java
Server Pages share with string operations the disadvantage that not even well-formedness
is checked at compile time.

Low-level binding

An improvement is to provide classes for nodes of an XML document tree thus allow-
ing to access and manipulate arbitrary XML documents by object-oriented programming.
Representatives of this approach, sometimes called low-level binding, are the Document
Object Model (DOM) [W3C98a] and JDOM [JDO]. They are widely accepted and sup-
ported. It is the only standardized and language independent way for XML processing.
Constant XML fragments can be programmed in a pure object-oriented manner, which is
rather tedious, or by parsing an XML fragment into the object structure, which requires
runtime validation. Low-level bindings ensure well-formedness of dynamically generated
documents at compile time, but defer validation until runtime.

JavaScript [Net97] is embedded in HTML and runs on the browser side. It allows, among
others, to generate HTML parts dynamically. This can be done either on a pure string basis
or on the basis of the DOM.

High-level binding

Recently a series of proposals [Bou02], called high-level bindings, have been presented.
With Sun’s JAXB, Microsoft’s .Net Framework, Exolab’s Castor, Delphi’s Data Binding
Wizard, Oracle’s XML Class Generator [Sun01, Mic01, Exo01, Bor01, Ora01] we only
mention the better known products. These approaches deal with the assumption that all
processed documents follow a given schema. This description is used to map the document
structure onto language types or classes, which reproduce directly the semantics intended
by the schema. Like the low-level binding, high-level binding provides no facilities to cope
with constant XML fragments. Therefore the formulation of constant XML fragments has



to be done by nested constructor or method calls, or by parsing of fixed documents, called
unmarshalling. The first procedure is tedious for the programmer the second one needs
validation at run-time. High-level bindings ensure well-formedness of dynamically gener-
ated documents at compile time. Static validity is only supported to a certain limited extent
depending on the selected language mapping. Additionally they have been developed only
for specific programming languages and are far away from becoming a standard.

With Validating DOM (VDOM), an extension of DOM, we introduced a high-level binding
in previous work [KL01]. We coupled this binding with a mechanism called Parameterized
XML (PXML) to support constant XML fragments guaranteeing static validity at compile
time. The mechanism we use to guarantee the correctness in PXML is similar to an idea
introduced in the setting of program generators about 20 years ago [Lin81]. The basic idea
of that work was to introduce a data type for each nonterminal symbol of a context free
grammar. So called generating expressions allow the program generator to insert values of
these data types in places where the corresponding nonterminal symbol is allowed accord-
ing to the underlying grammar. This mechanism guarantees the syntactical correctness of
all generated programs statically.

Compile time validation

We are aware of only three approaches which are really comparable to XOBE.

The XDuce language [HVP00] is a functional language developed as an XML processing
language. It introduces so called regular expression types the values of which are compa-
rable to our XML objects. Elements are created by specific constructors and the content
can be accessed through pattern matching. XDuce supports type inference for patterns and
variables and performs a subtyping analysis to ensure validity of regular expression type
instances at compile time.

BigWig [BMS01] is a programming language for developing interactive web services.
It compiles BigWig source code into a combination of standard web technologies, like
HTML, CGI, applets, and JavaScript. Typed XML document templates with gaps are
introduced. In order to generate XML documents dynamically, gaps can be substituted at
runtime by other templates or strings. For all templates BigWig validates all dynamically
computed documents according to a given DTD. This is done by two data flow analyses
constructing a graph which summarizes all possible documents. This graph is analyzed to
determine validity of those documents. In comparison to our approach templates can be
seen as methods returning XML objects. The arguments of the methods correspond to the
gaps of the templates.

Another challenging approach is presented by the language specification of XL [FGK02].
XL is an XML programming language for the implementation of web services. In contrast
to our approach, it is a stand-alone programming language, i.e. it is not an extension of
an existing language like Java. It provides high-level and declarative constructs adopt-
ing XQuery. Additionally imperative language statements are introduced making XL a
combination of an imperative and declarative programming language.

Additionally it is worth noticing that the upcoming standard of an XML query language
XQuery [W3C02] has to support static validity as well.



Evaluation

In the following table we show how the different approaches give compile time guarantees
and facilitate constant XML fragments.

constant compile time guarantees
XML fragments well-formedness static validity

CGI, Java Servlet - - -
JSP + - -
DOM, JDOM - + -
JAXB, CASTOR - + +
VDOM + + +
XOBE, XDuce, BigWig, XL + + ++

The main observation of the table is that only XDuce, BigWig and XL are really compa-
rable with our proposal. Other approaches either use only a string-based representation
of XML structures or make a strict distinction between the string representation and the
object representation of an XML structure.

XDuce implements a subtyping algorithm which is based on regular tree automata. It oper-
ates on an additional internal representation for regular expression types which is a source
of inefficiency. This internal representation is avoided in our algorithm. Furthermore, be-
cause XOBE is an extension of Java, it is easier to couple it with other components like
database systems.

BigWig’s type checking algorithm is based on data flow analyses and is therefore totally
different from our algorithm. Compared to XOBE we believe that our type system is
more expressive because we can incorporate XML Schema’s extension and restriction
mechanisms quite naturally into the subtyping algorithm. This seems to be difficult in
BigWig.

XL is defined as a special language for web services. In contrast, XOBE is defined as an
extension of Java. Java is an already established programming language for web services.
Thus XOBE can significantly benefit from Java by using already developed code.

8 Concluding Remarks

This paper presented the type checking algorithm of XOBE, an extension of the program-
ming language Java. XOBE addresses the mismatch between Java on the one side and
XML on the other by introducing XML objects which are defined by XML schema. It
was shown that in XOBE the distinction between XML documents and XML objects no
longer exists. XOBE is defined such that a running program works only with XML ob-
jects. XML documents in text form with explicit tagging are needed only for communi-
cating with the outside world. The validity of all XML objects within a program can be
checked at compile time by using XML constructors. In XML constructors, previously
generated XML objects can be inserted in places which are allowed according to the un-



derlying XML schema. The type checking algorithm which was presented in this paper is
used among others for checking the correctness of assignment statements involving XML
objects. This correctness is checked by proving that the set of all XML objects which can
be derived by evaluating the right hand side of an assignment is contained in the set of
XML objects which are allowed as content of the variable on the left hand side according
to the underlying XML schema. It was shown that well known notions from the literature
can be enhanced for this purpose. In XOBE, the content of XML is accessed by XPath-
expressions. A first prototype of the XOBE language extensions including the type system
was implemented and some performance measures were provided.

In the future we plan to use XOBE in various application areas. One area will be the
media archive software developed in Lübeck [Beh00]. The media archive implementation
in its present state primarily uses Java Server Pages for generating HTML and XML. Other
application areas will be looked at also. Moreover, we plan to integrate XQuery into the
language. Allowing XML objects to be persistent results then in an XML-based database
programming language.
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A Shop Interchange Format

schema
e l e m e n t name=” s hopReques t ” t y p e =” t s h o p R e q u e s t”/

complexType name=” t s h o p R e q u e s t” s equence
e l e m e n t name=” s h o p p i n g C a r t ” t y p e =” t c a r t R e q u e s t ”/

/ s equence /complexType

complexType name=” t c a r t R e q u e s t ” s equence
e l e m e n t name=” a c c o u n t ” t y p e =” i n t e g e r ”/
cho ice

e l e m e n t name=” add ” t y p e =” i n t e g e r ”/
e l e m e n t name=” remove ” t y p e =” i n t e g e r ”/
e l e m e n t name=” g e t ” complexType / / e l emen t

/ cho ice
/ s equence /complexType

e l e m e n t name=” s hopRes pons e” t y p e =” t s h o p R e s p o n s e ”/

complexType name=” t s h o p R e s p o n s e ” s equence
e l e m e n t name=” s h o p p i n g C a r t ” t y p e =” t c a r t R e s p o n s e ”/

/ s equence /complexType

complexType name=” t c a r t R e s p o n s e ” s equence
e l e m e n t name=” a c c o u n t ” t y p e =” i n t e g e r ”/
e l e m e n t name=” r e q u e s t ” t y p e =” t r e q u e s t ”/
e l e m e n t name=” i t e m s ” t y p e =” t i t e m s ” minOccurs=”0 ” /

/ s equence /complexType

complexType name=” t i t e m s ” s equence
e l e m e n t name=” a r t i c l e ” t y p e =” i n t e g e r ” minOccurs=”0” maxOccurs=”

unbounded”/
e l e m e n t name=” d e s c r i p t i o n ” t y p e =” s t r i n g ” minOccurs=” 0”/

/ s equence /complexType

s impleT ype name=” t r e q u e s t ” r e s t r i c t i o n bas e =” s t r i n g ”
e n u m e r a t i o n v a l u e =” p r o c e s s e d ”/
e n u m e r a t i o n v a l u e =” f a i l ”/

/ r e s t r i c t i o n / s impleType
/schema


