
Efficient Assembly of Product Structures
in Worldwide Distributed Client/Server Environments

E. Müller, P. Dadam
University of Ulm

Faculty of Computer Science
Dept. Databases and Information Systems
{mueller,dadam@informatik.uni-ulm.de}

M. Feltes
DaimlerChrysler

Research and Technology
Dept. RIC/ED, Ulm

{michael.feltes@daimlerchrysler.com}

Abstract:The efficient management of product-related data is a big challenge for many
manufacturing companies, especially the larger ones like DaimlerChrysler. So-called
Product Data Management (PDM) systems are used to tackle this task. But especially
in worldwide distributed product development environments, where low bandwidth
networks are used, response times of PDM systems often raise to several minutes even
for simple user actions. The main reason for this is the amount of wide area network
communication caused by poor implementations of PDM systems which a) often use
the underlying database management system like a stupid record manager, and b) do
hardly know anything about the distribution of the data. In this paper we introduce an
extension of directed acyclic graphs which enables us to adequately represent product
structures. On the basis of this representation we show how some additional infor-
mation describing the data distribution can be used to assemble distributed product
structures very efficiently.

1 Introduction

Product development is a time-consuming and costly process. Keen competition espe-
cially forces the manufacturing companies to shorten this process in order to survive.
Besides the wellknown CAD and CAE tools, which help to optimize the completion of
intra-disciplinary tasks, so called Product Data Management (PDM) systems have been
established during the last years in order to support the inter-disciplinary tasks at best (cf.
[MOn], [MP], [WT], [CIM97]).

PDM systems claim to be the information backbone serving all users involved in the de-
velopment process (cf. [OLR95]). This means that all data relevant to somebody in this
process have to be managed by the PDM system – beginning at the core product struc-
ture which describes the composition hierarchy of parts and subparts, and ending at all
describing documents like specifications, CAD files, work orders, simulation results, and
so on (cf. figure 1). Especially in case of complex products like cars, PDM systems have
to manage thousands of such objects and provide these data to thousands of users – with
acceptable response times!

It is not only the amount of data which makes a product complex. It is also the fact that
products can be customized or configured and therefore typically exist in several different

CAD
CAD

CAD

CAD

Figure 1: A simplified product structure with several document types

versions: A car for example may be offered in a "basic model" which can be configured
according to the customers’ demands by equipping it with lots of additional features, e.
g. a sunroof, a navigation system, xenon headlights and so on. Easy to imagine that the
number of different producible cars can be extremely high, but the difference between two
configurations may be rather small as all configurations share a lot of common parts. So
instead of storing each configuration separately (which would lead to totally inefficient
structure handling) the structures of all supposable product instances are combined in one
large structure. To retrieve the structure of a certain product instance, parts of this structure
may be ruled out by appropriate conditions.

A typical way of using PDM systems is to navigate in the product structure according to
some configuration options (like the features in the car example). Users begin at the top-
level element of the product structure (i. e. the product itself) and expand the subjacent
level of the structure. This so-called single-level expand is repeated until the user finds
what he looks for. In doing so, today’s PDM systems – for various reasons they typically sit
on top of relational database management systems – use SQL as a simple record manager:
The navigational traversal of the product tree is typically translated nearly one-to-one into
single isolated SQL queries. This stepwise navigation also works for the multi-level expand
which expands the entire product structure by recursively applying the single-level expand
method.

A closer look to the representation of product structures within the database shows how
these expand actions work: Typically parts consist of several subparts (which are parts
as well), and sometimes one subpart may be integrated into several parts. This recursive
n:m-relationship is realized by so-called link-objects. In distributed environments the link-
objects also identify the databases where the related parts are stored. In today’s PDM
systems an expand action for a certain part first retrieves all link-objects that identify the
corresponding subparts. In a second step the subparts are retrieved from the database(s)
indicated in the link-objects.

This naive (one-object-at-a-time or one-level-at-a-time) approach leads to a large number
of SQL queries (and result messages, of course). In environments, where the DBMS and
PDM system are connected via high-speed netwoks with low latency times, this may not
cause too much harm. The picture may change dramatically, however, if the users are
working in geographically distributed environments. Some experiments in prototypical
but realistic PDM environments at DaimlerChrysler have shown that response times may
rise by orders of magnitude, e. g. from 1–2 minutes in the local context to 30 minutes in

the "intercontinental" context. The reasons for these inacceptable response times are the
typically long latency times and low bandwidth of wide area networks.

Obviously, the aim must be to cut down response times of expansion operations by a so-
lution that a) minimizes the number of communications (i. e. the number of SQL queries)
between distributed locations, and b) in doing so, does not increase the volume of trans-
mitted data. A very promising way to achieve this goal is to provide a function shipping
approach instead of today’s stepwise data shipping.

In [MDEF01] we describe a first approach for pushing the navigational process from the
PDM system to the DBMS. Substituting several isolated consecutive SQL queries by one
recursive SQL query (cf. [ANS99], [EM99], [IBM01]) may dramatically speed up the ex-
pand methods in environments having only one central data server and several distributed
PDM servers. However, if the data is stored distributedly – i. e. the tables storing parts and
link-objects are split into several partitions which are distributed across several database
servers – there is no way to efficiently assemble the entire product structure by one single
recursive query: At query generation time there is no information available about the par-
titions that have to be accessed for assembling the given part. This information can only be
obtained by interpreting link-objects. As SQL does not provide the ability to dynamically
switch to different data sources during query execution according to such "run-time inter-
preted" data, the recursive query either considers a) only one partition or b) the union of
all partitions. In the first case one needs to generate a sequence of recursive queries each
of which only collects the parts and link-objects stored in one partition. In the latter case
too many tuples, which do not have any effect on the resulting structure, are transmitted to
the executing server.

In principle, the first approach is the basis of the solution presented in this paper. We
provide additional information about which parts at which servers have to be retrieved
when assembling the product structure. This index-like information, the so-called object
link and location catalog, enables us to contact each server involved in a product structure
assembly only once. It avoids multiple retrieval of multiply occurring parts within the
structure, it allows queries to different database servers to be executed in parallel, and it
helps to minimize the number of communications between database servers.

The rest of this paper is organized as follows: Section 2 introduces an extension of a com-
mon directed acyclic graph, the so-called directed acyclic condition graph. This enables us
to adequately represent configurable product structures. In section 3 we define the object
link and location catalog. Usage and benefits of this catalog are described in section 4. The
algorithms for handling the catalog are presented in section 5. Related work is discussed
in section 6. Section 7 concludes and gives an outlook to further work.

2 Product Structure in Terms of a DAG

2.1 Representing Product Structures

At first glance a product structure can be adequately represented by a simple directed
acyclic graph (DAG, cf. [CLR96],[Sed88]): Each project, part and subpart is a vertex of
such a graph, and any directed relation between them – e.g. the "part-uses-subpart" re-
lation – is a corresponding edge. But unfortunately, the simple DAG lacks the ability to
express the flexibility of a product structure regarding product configuration and structure
options (confirm section 1). It would be neccessary either to store each product instance in
an isolated DAG (which is impossible for products with a large number of possible config-
urations like cars) or to simply "merge" the structures of all producible product instances
losing the capability to correctly extract the structure of a certain product instance. In order
to solve this problem we need the ability to express whether a certain edge of the DAG
is a member of an actual corresponding product instance or not. This can be achieved by
extending the DAG by appropriately defined configuration conditions.

2.2 Extending DAGs for Product Structure Requirements

We assume O to be a set of available options O = f�1; �2; : : : ; �ng that can be used to
configure product instances. A user can choose some, all or none of these options in order
to indicate which optional parts have to be included into the basic product structure. We
describe this situation by the following formalism in the style of propositional calculus (cf.
[Fit90], [LE78]):

O can be viewed as a set of atomic formulas. When the user chooses some options, he
defines an assignment �A : O ! f0; 1g, i. e. selected options are assigned the value 1, the
others are set to 0.

Dependent on O we introduce the set C of logic expressions – called conditions – which
are solely built over the atomic formulas in O, i. e. the elements of O can be combined
with the operators AND (^), OR (_) and NOT (:). For completeness reasons we assume
the "true condition" > (always true) to be an element of C, too. Now we extend �A to
A : C ! f0; 1g which indicates whether an expression c 2 C evaluates to true (i. e. 1) or
not.

Definition 1: Directed Acyclic Condition Graph (DACG)

A Directed Acyclic Condition Graph Gc is an extended DAG defined as fol-
lows:

G
c = (V;E; C) where E � V � V � C, V is the set of vertices, C is a set of

conditions, and E is the set of condition-annotated edges between vertices.

The semantics is as follows: An edge from vertex u to vertex v is only valid, if the an-

notated condition c evaluates to TRUE (i. e. A(c) = 1) for a given assignment �A.1 In
general we denote this edge u

c
+ v, but if c = > we omit the condition and write sim-

ply u + v. Similarly, a path from vertex u to vertex v in a DACG G
c is written as

hu
c1
+ n1

c2
+ : : :

ck
+ nk

ck+1
+ vi.

For our investigations in subsection 3.2 we introduce the transitive closure of a DACG
here:

Definition 2: Transitive closure of a DACG

The transitive closure Gc� of a DACG G
c = (V;E; C) is defined as follows:

G
c� = (V;E�

; C�) where E� = E [f(u
c
+ v)ju; v 2 V ^

9d = hu
c1
+ n1

c2
+ : : :

ck
+ nk

ck+1
+ vi in Gc

; (k > 0);

and c = c1 ^ c2 ^ : : : ^ ck+1g and C� = C [fcju
c
+ v 2 E�g.

Like in ordinary DAGs an edge of a transitive closure of a DACG connects vertices that
are starting and ending points of a path in the original graph. In case of DACGs each edge
of the transitive closure is annotated with the conditions which are related to the edges of
the corresponding path, connected by the "AND" operator.

2.3 Partitioning DACGs

In typical scenarios product structures are distributed accross several partners and suppli-
ers. In such environments it is realistic to assume that each involved partner stores only
those portions of the structure which he is responsible for or which correspond to parts
he produces. So, looking at the entire product structure as a DACG, each server manages
some sort of partition of this DACG.

We define a partition Psi
of a DACG as follows:

Definition 3: Partition of a DACG

Assume Gc = (V;E; C) a DACG and f : V ! S a function that "marks" all
the vertices of Gc with an element of S. For each element s 2 S there exists
one subgraph Ps of Gc where

Ps = (Vs; Es; C)jVs = fv 2 V jf(v) = sg ^

Es = f(u
c
+ v) 2 Eju 2 Vs _ v 2 Vsg

The connected components2 of eachPs are called partitionsPsi
= (Vsi ; Esi

; C)
of Gc.

1In the automotive industry the condition c for example may guarantee that "v is only part of u if the car in
scope has to be equipped with a sunroof".

2The connected components of a directed graph G = (V;E) correspond to the connnected components of
the undirected version G0

= (V;E
0
) of G. In the same sense we use the term for a DACG, too.

Remark: a partition Psi
does not represent a DACG as defined in definition 1, since Esi

may contain at least one edge (u
c
+ v) where either u 62 Vsi or v 62 Vsi ! These edges

combine two differently marked partitions and belong to both connected partitions!

In our environmentS would be the set of servers or PDM systems participating in a product
development environment. The function f would map each elementary object (e. g. an
assembly) to the server it is stored at.

Figure 2 shows an example of a very simple DACG split into several partitions. In this ex-
ample, the set of marks is S=fA;B;C;Dg, and the mapping function f assigns the follow-
ing values: f(1)=f(2)=f(3)=f(13)=A, f(4)=f(12)=B, f(5)=f(6)=f(8)=f(9)=f(10)=C,
f(7)= f(11)=D. The set of conditions is C=fc1; c2; c3; c4;>g. The partitions of Gc are
marked with grey shapes.

1

2

4

8 9

5 6 7

10

12 13

11

3

A

B

C C

D

D

AB

C
1

C
4

C
2

C
3

Figure 2: A simple distributed DACG G
c

3 Object Link and Location Catalogs

3.1 Conventional Assembly Strategies

Partitioning as introduced in subsection 2.3 enables us to specify the distribution of a
DACG across several servers. In order to reconstruct a suchlike distributed DACG – or,
speaking in terms of product structures, to assemble an entire product of all parts and
subparts – there exist several well-known, conventional strategies (cf. [MGS+94]):

1. Starting with the top-level element (the root node of the graph), fetch recursively
all directly related subparts of the parts already retrieved (one-level-at-a-time). – As
already outlined, this is the naive, very inefficient approach.

2. Ship all remote data to the location where the top-level element is stored (or where
the action is started) and assemble the entire complex object subsequently at that

site. – This strategy may be very expensive: The resulting complex object may con-
sist of only a very small fraction of all transmitted vertices (i. e. simple objects)
due to some user-selected conditions. Unfortunately, the objects not included in the
result possibly caused a non-negligible transmission overhead.

3. The server starting the action becomes the "master" of the activity (storing a parti-
tion we call Pmaster), all other servers behave like "slaves" (storing Ps1

; : : : ; Psn
).

The master assembles the desired structure locally (as far as possible) and requests
missing parts of the structure from the slaves all times it reaches an edge that com-
bines Pmaster with one of the other Psi

. As long as the result of a remote server si
contains an edge that connects Psi

to Psj
, the master has to request the missing part

of the structure from the server storing Psj
.

To illustrate this approach, we assume S (cf. figure 2) to be the set of participating
product data servers. Server A at first retrieves vertices 1; 2, and 3, interprets the
edges 2 + 4, 2 + 5, 3 + 6, and 3 + 7 (to simplify matters we omit condi-
tions here) successively and sends corresponding requests to servers B ("assemble
substructure with root 4"), C ("assemble substructure with root 5", "assemble sub-
structure with root 6"), and D ("assemble substructure with root 7). The result of
server B does not contain any edges that combine two partitions, but the results of
server C do: They contain 9 + 12 and 9 + 13, and 6 + 11 respectively, so the
master (i. e. serverA) has to request the substructures with roots 12, 13 and 11 from
the corresponding servers B, A(!), and D. After this the structure is complete.

There is one major disadvantage with this approach: Each server may be contacted
more than once within one activity as it happend to the servers B, C, and D in our
example. This causes superfluous net traffic and therefore – especially in wide area
networks – leads to long response times.

4. Instead of having only one master which requests substructures from remote loca-
tions, each server is allowed to do so. In our example serverA requests the substruc-
tures with roots 5 and 6 from server C which in turn requests the substructure with
root 12 from server B, 11 from server D etc. and returns the combined results to A.
A finishes the action after receiving the responses of all servers according to their
requests.

This approach has the disadvantage mentioned in approach 3, too. In addition to
this, if there exist cyclic dependencies within the servers storing partitions of the
DACG (e. g. server A references server C which in turn references A) parts of the
graph may be sent through the network multiple times (A sends to C, which returns
the combined result back to A). This is absolutely dissatisfying!

5. One could also use a mixture of approaches 3 and 4. A server, for example, which
is reachable only through a very slow network connection may not be allowed to re-
quest subtrees from remote servers, except it is the master according to approach 3. –
This may eliminate some low speed network communications, but the disadvantages
cannot be obviated really.

As a matter of fact, using conventional algorithms there is no way to reconstruct a widely
distributed DACG causing only minimal communication effort. Obviously, the reason for
poor performance is that – depending on the distribution of the DACG – remote servers
may have to be contacted multiple times within one single assembly operation. So, what
we need is some additional information about the distribution of the DACG to avoid such
multiple server connections when accessing more than one partition of the structure. In
our example server A initially does not know anything about the edge between vertices 9
and 12, so A does not know that there exists an additional (transitive) dependency from
A to B. However, if A knew this, it could request vertex 12 from B directly, saving one
communication to B if the requests for vertices 4 and 12 were combined! So what we
need is some sort of a "virtual edge" e. g. between vertices 2 and 12. Suchlike edges will
be stored in the object link and location (OLL) catalog.

3.2 Definition of OLL Catalog

The challenge is to construct the OLL catalog in that way that it is a) minimal in size
(that means it does not contain irrelevant or obsolete information) and b) complete (no
information neccessary is missing). Based on the DACG introduced in subsection 2.2 we
define the OLL catalog as follows:

Definition 4: OLL Catalog

Assume G
c = (V;E; C) to be a DACG, and f : V ! S a function for

marking vertices. Assume Gc� = (V;E�
; C�) to be the transitive closure of

G
c. Then the OLL catalog E 0 of Gc is defined as:

E
0 = fu

c

+ v 2 E� nEj9d = hu
c1
+ n1

c2
+ : : :

ck
+ nk

ck+1
+ vi in Gc

;

(k > 0);wheref(ni) 6= f(u) ^ f(ni) 6= f(v); 1 � i � kg.

In other words: The OLL catalog contains a virtual connection of two vertices u and v if
v is reachable (in the original DAG) from u by only traversing vertices that are marked
differently from u and v. Figure 3 shows the DACG of figure 2 extended by edges of its
corresponding OLL catalog (2

c1^c4
+ 12, 2

c1
+ 13, and 3

c3
+ 11).

4 Using OLL Catalogs

4.1 Description of the Approach

The goal of the OLL catalog is to enable performing of recursive expansions a) in one
single path and b) to visit each server involved only once. This is achieved by providing
enough information in the OLL catalog such that all "transitive" remote requests can be
performed by the initiating server. If, for example, the product structure in figure 3 has to

C
1

C
4

�

1

2

4

8 9

5 6 7

10

12 13

11

3

A

B

C C

D

D

AB

C
1

C
1

C
4

C
2

C
3

C
3

Figure 3: The DACG G
c of figure 2 extended by the edges of the OLL catalog

be expanded by server A, server A will contact servers C, B, and D in order to retrieve the
vertices stored there, while servers B, C, and D only perform local expansions.

The multi-level expand of a product structure can be split into three steps: First, upon
request the server storing the top-level element of the structure expands the structure ac-
cording to the locally available structure information. During this recursive descent the
server collects unresolved references to remote parts. In the second step, recursive queries
are generated for retrieving the remote parts. Third, the queries are executed at the remote
sites in parallel and return partially assembled substructures. We will show this procedure
by performing a multi-level expand of vertex 1 in the example in figure 3.

We assume c1=c2=c3=c4=1, i. e. all partitions of the DACG have to be retrieved.

At first, server A expands the structure of vertex 1 locally: The edges pointing from vertex
1 to vertices 2 and 3 are retrieved and interpreted. As vertices 2 and 3 are stored locally,
they can be fetched at once. As there are no edges in the OLL catalog starting at vertex 1,
server A immediately tries to expand the structure of vertex 2. The corresponding edges
are fetched from the local partition of server A, but they point to the vertices 4 and 5 at
servers B and C respectively. Instead of retrieving the two remote vertices immediately,
server A collects them in a set of unresolved references for later usage.

At this point server A accesses the OLL catalog again: There exist two entries in the
catalog, pointing from vertex 2 to vertices 12 and 13 at servers B and A respectively. The
conditions attachted to both vertices evaluate to true (c1 ^ c4=1, and c1=1, too), so both
vertices are in the scope of the result. OLL catalog entries pointing to a partition that is
stored locally are processed immediately, the target vertices of the remaining entries are
added to the set of unresolved references. This causes all locally stored partitions, which
are reachable from the vertex in scope (in the example this is vertex 1), to be expanded in
one recursive descent. So, serverA now proceeds by expanding vertex 13 according to the
method just described for vertex 2.

After finishing the assembly of vertex 13, server A turns towards vertex 3. All edges in the

DACG as well as in the OLL catalog, which start at vertex 3, point to vertices at remote
partitions. Therefore they are collected in the set of unresolved references, too.

At this moment, server A finishes its local recursion. The set of unresolved references
contains the following vertices: 4, 12, 5, 6, 11, and 7.

Now the remote servers can be instructed to locally expand the missing parts of the struc-
ture: Server B has to assemble the subgraphs of vertices 4 and 12, server C the subgraphs
of vertices 5 and 6, and server D the subgraphs of vertices 11 and 7. Note that each server
needs to be contacted only once in order to initiate the local expands!

As each of the three remote servers B, C, and D performs the same steps we show the
local expansion at server C only. Similar to the procedure already described for server
A, the server C tries to expand vertex 5 (vertex 6 either is processed in parallel or after
finishing the expansion of vertex 5) using the edges in the local DACG which references
vertices 8 and 9. Vertex 8 is a leaf in the graph and therefore cannot be further expanded. In
contrast, vertex 9 has references to the vertices 12 and 13 at servers B and A respectively.
As vertex 13 is already expanded by server A, and vertex 12 is processed by server B in
parallel, the recursive expansion stops here. Finally, the result is returned to server A.

After receiving all subgraphs from the involved remote servers, the entire structure is avail-
able at server A.

Further details can be found in the algorithms in section 5.

4.2 Benefit of Using OLL Catalogs

Using the naive one-object-at-a-time approach, the expansion of a structure needs as many
remote accesses as remote nodes are involved in the structure. In figure 3, if the partitions
stored on servers B and D only contain the vertices 4, 12, 7, 11 respectively, then nine
remote communications are necessary for the expansion.

The approach using recursive queries without OLL catalogs will require as many remote
accesses as remote partitions are involved in the expansion of the structure. In our example
this still would lead to six remote communications.

By the usage of OLL catalogs the number of remote communications can be reduced
to the number of remote servers participating in the expansion. As each server in our
example stores two partitions of the structure, half of the six remote accesses can be saved.
Furthermore, in contrast to the other approaches, these remaining three requests can be
processed in parallel. Thus the overall expand does not take much longer than the most
time-consuming remote expand of a single substructure! If we assume the three remote
servers B, C, and D of our example to require similar execution times, the response time
can be cut down by approximately another two thirds!

In general, the usage of OLL catalogs reduces the amount of remote accesses to the lowest
possible extent, namely the number of database servers storing product data. Obviously
the benefit of this approach depends on the distribution of data. If there are only very
few servers storing more than one partition of the structure, it may not lead to much less

communications. In heavily distributed environments, however, OLL catalogs may save
half of the remaining remote communications and even more.

Nevertheless, if the number of communications can not be cut down by the OLL catalog
due to a "smooth" data distribution, response times may still dramatically decrease: The
recursive queries for assembling substructures on different servers can be executed in par-
allel since the transitive dependencies between different partitions are resolved by the OLL
catalog and already considered when initiating the remote queries.

So, for all cases of distribution, OLL catalogs allow efficient assembly of product struc-
tures. Improvements regarding the response times are achieved by reducing the number of
communications and by parallel execution of remote queries.

5 Algorithms for Handling OLL Catalogs

The algorithms in this section work on a DACG G
c = (V;E; C). We use some notations

we informally introduce here:

S is the set of servers (hosts) which store one or more partitions of G c.

f(x) is a function f : V ! S.

z = ha; b; ci denotes a triple z consisting of the elements a, b, and c. The elements can be
accessed via z:a, z:b and so on.

g
(f(v))(x) means that the function g(x) has to be evaluated at the server storing vertex v.

s[z:x y] denotes an update action on all tuples z within the set s. The value of attribute
x is set to y.

OLL denotes the OLL catalog at the current (working) server (i. e. the server that runs
the procedure accessing the OLL catalog).

A describes the structure options in scope (as introduced in subsection 2.2).

5.1 OLL Catalog Initialization

The initialization process of the OLL catalog is distributed across all servers which store
parts of the structure. In order to create catalog entries we walk through the entire structure
depth-first, starting at the server that stores the root of the structure. At each vertex we test
if a OLL edge has to be created to one of the already visited vertices in the path down from
the root vertex (cf. definition 4).

The initialization procedure is initially called with Init(root,",;).

Algorithm 1: (Initialization of the OLL catalog)

Init(in vertex u, in condition precond, in borders B)
1 new_edges ;

2 sorted_B ;
3 if (B == ;) then seq 1
4 else
5 sorted_B sort(B) on B[z:seq_number] desc
6 seq max(B[z:seq_number]) + 1
7 endif
8 if (precond == ") then
9 for all hv; c; qi 2 sorted_B do
10 if (v

c

+ u 62 E) then
11 OLL OLL [fv

c

+ ug

12 if (f(u) == f(v)) then
13 break
14 else
15 new_edges new_edges [fv

c

+ ug

16 endif
17 endif
18 enddo
19 endif
20 for all u

c

+ p 2 E do
21 succ.push hu

c

+ p; precondi

22 enddo
23 while (succ:test ! = NULL) do
24 hu

c

+ v; condi succ:pop

25 if (f(u) == f(v)) then

26 for all v
�c
+ w 2 E do

27 succ.push hv
�c
+ w; cond ^ ci

28 enddo
29 else
30 B0

 (B[z:cond z:cond ^ cond ^ c]n
31 fb 2 B : f(b) == f(u)g) [fhu; c; seqig

32 succ_edges Init(f(v))(v; "; B0)

33 for all x
c

+ y 2 succ_edges do
34 if (x == u) then
35 OLL OLL [fx

c

+ yg

36 else
37 new_edges new_edges [fx

c

+ yg

38 endif
39 enddo
40 endif
41 enddo
42 return new_edges

Method: The tree traversal is started at the root vertex. Every time a link u
c
+ v from a

partition P� to an other partition P� is traversed, we include u (and the preconditions c 0

which define how to reach u) in a set B of consecutively numbered "border objects" (these
are vertices which have at least one edge to a vertex that belongs to a different partition).
If B already contains a border object b 2 Bjf(b) = f(u) – this is true if the path from

the root of Gc down to u contains elements which are stored at the same server as u but
in partitions different from P� – we substitute b with u. After that the server hosting P�

is instructed to initialize its OLL catalog concerning P� regarding B. Here the first step
is to create OLL catalog entries, i. e. we loop over b 2 B descendingly ordered by their
sequence numbers, and create links from these b to v with respect to the precondition of
b.3 This loop stops if either all border objects are processed or a border object in scope
is stored at the same server as P�. Thereafter the algorithm proceeds as described for the
root server.

If a server finishes its OLL catalog initialization, it returns the created edges to its caller.
This server copies all edges u

c
+ v where u is stored locally to its own OLL catalog. The

remaining edges are added to the set of self-created OLL catalog entries and returned to
its caller in turn. The procedure stops when the root server finishes.

5.2 OLL Catalog Extension

Product structures are frequently updated during the product development process. In most
cases they do not affect the distribution of data. Object migration occurs rather seldom, as
typically all partners and suppliers are interested in managing the data concerning their
work share locally. Sometimes, however, product structures are not completely defined at
startup of a project, so additional suppliers may have to be integrated into the development
framework later. In this case updates of the OLL catalog have to be performed.

Algorithm 2 shows a fragment of a structure update procedure that calls the Update-
procedure (algorithm 3) regarding the servers the newly connected objects are stored at.

Algorithm 2: (Extension of product structure)

CreateNewEdge(in vertex u, in vertex v, in condition c)
1 . . .
2 if (f(u) == f(v)) then
3 dset Update(f(u))(u; hv; ci; c; ;)
4 else
5 dset Update(f(u))(u; hv; "i; c; fhu; c; 0ig)
6 endif
7 . . .

Algorithm 3: (Extension of OLL Catalog)

Update(in vertex x, in hvertex u, condition precondi,
in condition �c, in borders B)

1 new_edges ;

3The border object u has not to be regarded since u
c

+ v 2 E (storing this edge in the OLL catalog would
not lead to any additional information).

2 if (B == ;) then
3 seq 0
4 else
5 seq min(B[z:seq_number])� 1
6 endif
7 if (9 w

c

+ x 2 E) then
8 for all w

c

+ x 2 E do
9 pred.push hw

c

+ x; �ci
10 enddo
11 else
12 pred_edges Init(f(u))(u; precond;B)

13 for all u
c
0

+ v 2 pred_edges do
14 if (f(u) == f(x)) then

15 OLL OLL [fu
c
0

+ vg

16 else

17 new_edges new_edges [fu
c
0

+ vg

18 endif
19 enddo
20 endif
21 while (pred:test ! = NULL) do
22 hx

c

+ y; condi pred:pop

23 if (f(x) == f(y)) then

24 if (9 w
c
00

+ x 2 E) then

25 for all w
c
00

+ x 2 E do

26 pred.push hw
c
00

+ x; cond ^ ci

27 if (seq == 0) then
28 precond precond ^ c
29 endif
30 enddo
31 else
32 pred_edges Init(f(u))(u; precond;B)

33 for all u
c

+ v 2 pred_edges do
34 if (f(u) == f(x)) then
35 OLL OLL [fu

c

+ vg

36 else
37 new_edges new_edges [fu

c

+ vg

38 endif
39 enddo
40 endif
41 else
42 if (:9b 2 Bjf(x) == f(b)) then
43 pred_edges Update(f(x))(x; hu; precondi;
44 cond ^ c; B [fhx; cond ^ c; seqig)
45 else
46 pred_edges Update(f(x))(x; hu; precondi;
47 cond ^ c; B)

48 endif
49 for all u

c

+ v 2 pred_edges do
50 if (f(u) == f(y)) then
51 OLL OLL [fu

c

+ vg

52 else
53 new_edges new_edges [fu

c

+ vg

54 endif
55 enddo
56 endif
57 enddo
58 return new_edges

Method: The general idea behind algorithm 3 is as follows:
Assume u

c
+ v to be the new edge. If we knew about all border objects in the path from

the root object down to u we could simply call the Init-procedure (cf. algorithm 1) for u.
To obtain information about all relevant border objects is the main task of algorithm 3. The
procedure is to go backwards in the structure from u up to the root object and to collect
all border objects and the conditions along the path. When the root object is reached the
Init-procedure can be called.

Returning from the recursive descend each server includes the relevant new OLL edges –
created by Init – in its local OLL catalog, the remaining edges are returned to the calling
server.

5.3 OLL Catalog Usage

When expanding (or assembling) product structures, the usage of OLL catalogs is rather
simple. We only have to distinguish between the "master" server (i. e. the server that stores
the root vertex of the requested structure) and the other ones, the "slaves". The client which
requests the structure initiates the multi-level expand by calling XMultiLevelExpand (cf.
algorithm 4) which in turn calls the masterMLE and slaveMLE procedures (algorithms 5
and 6 respectively).

Algorithm 4: (Product structure expansion)

XMultiLevelExpand(in node u, in assignment A)
1 subgraph (;; ;)
2 remotenodes ;
3 masterMLE(f(u))(u,A,subgraph,remotenodes)
4 for all s 2 S in parallel do
5 Rs = fv 2 remotenodes : f(v) = sg

6 subgraphs (;; ;)
7 if (:(Rs == ;)) then
8 slaveMLE(s)(Rs;A; subgraphs)
9 Merge(subgraph; subgraphs)

10 endif
11 enddo
12 return subgraph

Method: XMultiLevelExpand is called with the vertex u to expand, and the assignmentA
of structure options the user selected. First the local structure is expanded (masterMLE),
resulting in (1) a preliminary subgraph and (2) all nodes on remote servers which have
to be expanded subsequently. The subtrees of all remote servers are requested in parallel
(cf. lines 4 – 11). The Merge procedure (line 9) simply creates the union of all resulting
subgraphs (i. e. V =

S
s2S

~Vs; E =
S

s2S
~Es where (~Vs; ~Es) is the resulting subgraph of

server s).

Algorithm 5: (Expansion according to the OLL catalog (master))

masterMLE(in node u, in assignment A,
out (~Vs; ~Es), out nodes remotenodes)

1 ~Vs fug

2 ~Es ;

3 successors fug
4 for all x 2 successors do
5 successors successors nfxg
6 for all x

c

+ y 2 E [OLLjA(c) do
7 if x

c

+ y 2 E then
8 ~Es ~Es [fx

c

+ yg

9 endif
10 if (f(x) == f(y)) then
11 ~Vs ~Vs [fyg
12 if (:marked_visited(y)) then
13 successors successors [fyg

14 endif
15 else
16 remotenodes remotenodes [fyg

17 endif
18 enddo
19 mark_visited(x)
20 enddo
21 return

Method: masterMLE is called to assemble vertex u considering the assignment A. The
two nested loops in line 4 and 6 traverse the local substructure. In lines 7 – 9 the local edges
are collected (OLL edges are not included in the result!). Local vertices are then added to
the result, remote nodes are collected separately (lines 10 – 17). Visited vertices are marked
in order to avoid multiple processing (line 19). The result of masterMLE consists of a) the
local subgraph and b) a set of all directly or indirectly referenced vertices stored at remote
sites.

Algorithm 6: (local expansion of a PS according to local OLL catalog entries (slave))

slaveMLE(in Rs, in assignmentA, out (~Vs; ~Es))
1 ~Vs Rs

2 ~Es ;

3 successors Rs

4 for all x 2 successors do
5 successors successors nfxg
6 for all x

c

+ y 2 E [OLLjA(c) do
7 if x

c

+ y 2 E then
8 ~Es ~Es [fx

c

+ yg

9 endif
10 if (f(x) == f(y)) then
11 ~Vs ~Vs [fyg
12 if (:marked_visited(y)) then
13 successors successors [fyg

14 endif
15 endif
16 enddo
17 mark_visited(x)
18 enddo
19 return

Method: In contrast to the masterMLE procedure, slaveMLE is called with a set of ver-
tices which are the root objects of local substructures. The rest of slaveMLE works similar
to masterMLE, except that no remote objects have to be collected.

6 Discussion

During the past few years a lot of research work has been performed in the context of
distributed query processing in all kinds of databases (cf. [Gra93], [HMS92], [Kos00],
and [YM98]). The very special but important aspect of assembling distributed objects,
however, has received little attention.

In [KGM91] and [MGS+94] an "assembly" operator is introduced for combining dis-
tributed complex objects causing only a small number of communications to remote sites
by doing as much work as possible at each location which is involved in the user’s request:
The remote sites assemble the object status locally as far as possible and return partial ob-
jects which have to be checked for further unresolved references. If any, the missing parts
are retrieved from the corresponding servers. This is similar to the approach described in
section 1, where a sequence of recursive SQL queries is executed to assemble the entire
product structure. The problems are similar as well: Remote sites may be contacted more
than once, and parts occurring more than once within the structure are retrieved multiply.

An evaluation strategy for executing recursive queries in distributed deductive databases is
described in [NCW93]. The paper focuses on minimizing the distribution costs based on

the idea of semi-joins in conventional databases. Avoiding multiple calls to a remote site
is not in the scope of the approach presented there.

Initialization and usage of OLL catalogs are closely related to distributed or parallel ex-
ecution strategies for transitive closure (cf. [CCH93], [HAC90]). The distributed product
structure in our scenario may be seen as some kind of semantic fragmentation of the data
according to the workshare defined by collaborating partners and suppliers. [HAC90] de-
scribes an approach similar to the one presented here: First, fragments which are involved
in the query (based on the transitive closure) are determined by interpreting some sort of
"fragment connection graph". Second, the – probably slightly modified – query is exe-
cuted at each fragment in parallel. At last the partial results are combined according to the
initial query. This method works well for e.g. the connection and shortest path problems.
However, because of the quite imprecise connection information at the fragment level, the
execution of multi-level expands using this approach would result in too many objects in
the intermediate results which would have to be filtered out in the final "merging" step.
To avoid this we store the precise information about the connected objects of different
fragments within the OLL catalog.

At first glance, the OLL catalogs may look like the routing tables of computer networks
([Tan89]). Routing tables are used to route network packets between two nodes via the
cheapest or shortest path. In contrast to our OLL catalog initialization, algorithms com-
puting such tables typically use some sort of shortest path approaches.

OLL catalogs may bee seen as an index along path expressions, like a nested or path
index (cf. [YM98]). Path indexes support the efficient evaluation of conditions in WHERE-
clauses of queries. The benefit of path indexes is based on the fact that the evaluation
of conditions in WHERE-clauses of queries does not need to traverse substructures of
requested objects. In our case, however, queries such as the multi-level expand are to return
an entire substructure by traversing it. In order to speed up this different kind of queries,
we need an other type of index. OLL catalog entries do not depend on values of object
attributes – in contrast to nested or path indexes – but on the location of the objects.

In this paper we regard product structures as a special kind of directed acyclic graphs. All
algorithms presented here are specialized versions of tree traversals using the depth-first
search (cf. [CLR96], [Sed88]).

Partitioning directed acyclic condition graphs seems to be similar to the derived horizontal
partitioning of tables in distributed databases ([CP84]). However, efficient query process-
ing in this special context has also received little attention only.

Analytical computations (cf. [MDEF01]) have shown that in most cases (assuming realistic
product structures) the algorithms described in section 5 may eliminate up to 95% of the
original response times of multi-level expand actions! Figure 4 illustrates the typical results
of such computations: The response times of multi-level expand actions using the simple
"traditional" approach are compared to those using the OLL approach on the basis of three
differently sized product structures in three different network environments (the assumed
latency times Tlat and data transfer rates dtr of configurations 1, 2 and 3 are T lat = 150ms

and dtr = 256kBit=s, Tlat = 150ms and dtr = 512kBit=s, and Tlat = 50ms and
dtr = 1MBit=s respectively).

0

200

400

600

800

1000

1200

1400

1600

1800

simple OLL simple OLL simple OLL

(configuration 1) (c onfiguration 2) (configuration 3)

smal l struc ture medium s iz ed structure large structure

Figure 4: Multi-level expand response times of three different product structures in
three different network environments

The OLL approach has been implemented experimentally using IBM DB2 UDB v7.2 as
the underlying DBMS. The measurements performed showed response times which came
very close to the analytically estimated ones.

7 Summary and Outlook

In order to survive severe competition, collaborative product development spanning several
geographically distributed partners is becoming an indispensible must for manufacturing
industries more and more. Even in wide area networks, fast access to the partners’ data –
especially for assembling product structures – is essential for efficient collaboration.

In this paper we introduced OLL catalogs. In short, they store information about transitive
dependencies of parts, which are stored in different partitions at possibly different database
servers. With these catalogs we are able to minimize the number of communications be-
tween involved database servers: Each server is contacted at most once, and even parts that
occur more than once within the product structure are queried only once. As no intermedi-
ate results are necessary to generate queries that retrieve missing remote substructures, all
queries can be executed in parallel, thus further minimizing the response times of assembly
operations.

The OLL approach described in this paper shows the direction into which PDM systems
have to move in order to meet the performance requirements of worldwide distributed
product development.

References

[ANS99] ANSI/ISO/IEC 9075-2:1999 (E). Database Language SQL – Part 2: Foundation
(SQL/Foundation), September 1999.

[CCH93] Filippo Cacace, Stefano Ceri, and Maurice A. W. Houtsma. A Survey of Parallel Exe-
cution Strategies for Transitive Closure and Logic Programs. Distributed and Parallel
Databases, 1(4):337–382, 1993.

[CIM97] CIMdata, Inc., CIMdata World Headquarters, Ann Arbor, MI 48108 USA. Product
Data Management: The Definition. An Introduction to Concepts, Benefits, and Termi-
nology, fourth edition, September 1997.

[CLR96] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT-Press,
1996.

[CP84] S. Ceri and G. Pelagatti. Distributed Databases. Principles and Systems. McGraw-Hill,
1984.

[EM99] A. Eisenberg and J. Melton. SQL:1999, formerly known as SQL3. ACM SIGMOD
Record, 28(1):131–138, March 1999.

[Fit90] M. C. Fitting. First-order logic and automated theorem proving. Springer, New York,
Heidelberg, 1990.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Sur-
veys, 25(2):73–170, 1993.

[HAC90] M. Houtsma, P. Apers, and S. Ceri. Distributed Transitive Closure Computations: The
Disconnection Set Approach. In Proceedings of the 16th Conference on Very Large
Databases, Morgan Kaufman pubs. (Los Altos CA), Brisbane, 1990.

[HMS92] T. Härder, B. Mitschang, and H. Schöning. Query Processing for Complex Objects.
Data & Knowledge Engineering, 7:181–200, 1992.

[IBM01] IBM Corporation. IBM DB2 Universal Database – SQL Reference – Version 7, 2001.
[KGM91] T. Keller, G. Graefe, and D. Maier. Efficient Assembly of Complex Objects. In Pro-

ceedings of ACM Sigmod Conference, Denver, Colorado, May 1991, volume 20, pages
148–157. ACM Press, June 1991.

[Kos00] D. Kossmann. The State of the Art in Distributed Query Processing. ACM Computing
Surveys, September 2000.

[LE78] A. H. Lightstone and H. B. Enderton. Mathematical logic: An introduction to model
theory. Plenum Pr. New York, 1978.

[MDEF01] E. Müller, P. Dadam, J. Enderle, and M. Feltes. Tuning an SQL-Based PDM System in
a Worldwide Client/Server Environment. In Proceedings of 17th International Confer-
ence on Data Engineering, Heidelberg, Germany, pages 99–108, 2001.

[MGS+94] D. Maier, G. Graefe, L. Shapiro, S. Daniels, T. Keller, and B. Vance. Issues in Dis-
tributed Object Assembly. In M. T. Özsu, U. Dayal, and P. Valduriez, editors, Dis-
tributed Object Management (Proceedings of the 1992 International Workshop on Dis-
tributed Object Management, August 1992, Edmonton, Canada), pages 165–181. Mor-
gan Kaufmann Publishers, 1994.

[MOn] Matrix One. www.matrix-one.com.
[MP] Metaphase. http://www.plmsol-eds.com/metaphase/index.shtml.
[NCW93] W. Nejdl, S. Ceri, and G. Wiederhold. Evaluating Recursive Queries in Distributed

Databases. IEEE Transactions on Knowledge and Data Engineering, 5(1):104–121,
February 1993.

[OLR95] A. Obank, P. Leaney, and S. Roberts. Data mangement within a manufacturing organi-
zation. Integrated Manufacturing Systems, 6(3):37–43, 1995.

[Sed88] R. Sedgewick. Algorithms. Addison Wesley, 2nd edition, 1988.
[Tan89] A. S. Tanenbaum. Computer Networks. Prentice-Hall International Editions, second

edition, 1989.
[WT] Windchill Technologies. http://www.ptc.com/products/windchill/index.htm.en.
[YM98] C. T. Yu and W. Meng. Principles of Database Query Processing for Advanced Appli-

cations. Morgan Kaufmann Publishers, San Francisco, California, 1998.

