
Towards Federated Search Based on Web Services

Jens Graupmann, Michael Biwer, Patrick Zimmer
University of Saarland, Germany
Department of Computer Science

P.O. Box 151150, D-66041 Saarbrücken
E-mail:graupman@cs.uni-sb.de

Abstract: Some emerging trends in the recent development of the WWW can be ob-
served. These trends are technical, like Web Services, as well as semantic, like the
integration of ontologies. We propose an architecture for a new kind of federated
search system, which takes these aspects and new developments into account. A ma-
jor challenge in this context is to cope with portals and the data sources behind the
portals, the so-called “Deep Web”. One component of the proposed architecture is the
service mediator, which generates wrapper classes and additional files to make portals
accessible as Web Services. Other components are an onotology server, which pro-
vides Web Service based access to different ontologies and an XML Filter server that
converts different source formats to XML. This loosely coupled architecture supports
federated search on semistructured data and the evaluation of semantic join operations.

1 Introduction

1.1 Motivation

Some emerging trends in the recent development of the WWW can be observed. These
trends are technical, like Web Services, as well as semantic, like the integration of on-
tologies. They are the foundation of the Next Generation Web. We will point out some
aspects of these developments and propose as an application example an architecture for
a new kind of federated search system, which takes these aspects and new developments
into account. One of the differences to other systems is that we do not want to do any
kind of “schema integration”. We don’t even know the data format of some of our data
sources in advance. We only want to find data objects (HTML, XML, PDF documents
etc.) satisfying our search conditions as well as possible. First we will introduce some of
the emerging technologies.

1.1.1 The “Deep Web” (Portals)

A lot of information in the WWW is stored in data sources, mostly relational databases,
which are connected to some server application logic, which dynamically generates Web
pages. These information repositories are hosted by so-called Web Portals. This highly

dynamic content leads to problems with today’s prevalent crawler based search engines.
The main issues are:

1. Information is not accessible by crawlers, because it is generated as a response to a
HTML form submission.

2. Links between pages change frequently. For example the content of a category
“daily news” changes daily and is regularly moved to the “archive” category.

To avoid these problems we wrap the portal search engines themselves into Web Services
and use them in the fashion of a meta search engine.

1.1.2 The “Semantic Web” (Ontologies)

One important aspect needed to improve the accuracy of search engines is the inclusion of
ontological information, not only to analyze Web content, but also to interpret and expand
user queries. The “Next Generation Web” should be able to provide this information by
itself. It has to provide a kind of “semantic interoperability” [DMHF00]. An approach
to provide means formalizing this is RDF/RDF-Schema [RDF00], a language to describe
Web resources and the corresponding schema containing (weak) ontological information.
A more expressive language for this purpose is DAML+OIL [DAML02], which seems to
become a de-facto standard.

1.1.3 The “Automated Web” (Web Services)

Web pages in general are generated by humans for humans. This is of course not surpris-
ing, but if we want to use tools to efficiently support us, we have to utilize technologies,
which allow computer programs to interact efficiently by using an appropriate data for-
mat, as well as an appropriate infrastructure. In many projects such infrastructures and
data exchange formats were invented, but only recently these technologies are becoming
widely accepted. These technologies include, of course, XML as data exchange format
and Web Services as infrastructure. SOAP is the Protocol on top of HTTP, the services
themselves are described in the Web Service Description Language WSDL and registered
in the Universal Description, Discovery and Integration (UDDI) Registry [UDDI01].

1.2 Related Work

Several recent approaches have dealt with the integration of heterogeneous data sources.
One of them is the TSIMMIS project [CHW91] . Its architecture is based on data source
wrappers, which are generated semi automatically. The wrappers, called Translators, con-
vert the data sources into a common data format. The Carnot[CHW91] project was one of
the first projects dealing with a federated search architecture integrating ontologies. In this
project a general purpose ontology is used. The OBSERVER Project [MKSI96] integrates

multiple ontologies and considers problems, arising in the context of the combination of
the different ontologies (mapping, inconsistencies etc.). Every node in the system has a
component, called Ontology Server, which is responsible for the translation of the query
expressed in terms of a user ontology (the ontology, the user has chosen before formulating
the query) into queries understood by the underlying data repositories. This translation is
done by utilization of mapping information defined for every data repository. In [BNL98]
the topic of “Join Processing in Web Databases” is addressed. In this work first a database
consisting of Web pages and links is built. Based on these materialized views a join can
be computed on the link structure. This means that “Web tuples” from one table are con-
nected to the tuples of another table, when pointing to the same URL. In contrast W3QL
[KOSH98] considers the WWW itself as a large database and uses an SQL like query
language for query processing.

1.3 Contribution

Most recent approaches have not addressed the issue of uncertainty in the quality of the
results and data sources. But even those approaches that have considered uncertainty, have
not considered join operations on multiple “uncertain” data sources. They have also posed
stringent demands on the integrated data sources to permit a unified view on them, mostly
realized by schema integration. In this work we introduce a federated search architecture,
which aims to seamlessly integrate existing data sources, especially (Deep) Web Portals
based on emerging technologies like Web Services and Web Ontologies. Furthermore we
will outline how to compute a similarity join operation on these uncertain results and point
out some aspects that have to be considered. Additional components are introduced for
ontological support and the (pre)processing of the different data formats in order to deal
more effectively with various other heterogeneous data sources.

2 Architecture

2.1 “Automated Web” meets “Deep Web”

Towards a Federated Service Web

In this section we describe a federated search architecture based on Web Service technolo-
gies. Although these techniques are rooted in the B2B area for commercial transactions
[CS02], they can be adapted for other purposes, too. Figure 1 depicts an application sce-
nario. First a client submits a query to a special kind of meta search engine. This engine
should be able to condense the query to a term pair consisting of one concept or class and
a set of properties for one instance of this class. In the example shown in figure 1 the
submitted query deals with “book”s about the topic “repairing Audi cars”. This pair is
submitted to the service search engine (1). The class term is used by the search engine

Invoke Service Search
SEARCH
Engine X

(XXL)

Object-Class
/Concept
BOOK

REPAIR
CAR
AUDI

Service Search Engine

Retrieve Sites by Concept

BOOK

S
u

b
m

it
Q

ue
ry

 v
ia

 S
O

A
P

S
ub

m
it

Q
ue

ry
 v

ia
 S

O
A

P

Submit Query via SOAP

Instance-
Properties

REPAIR CAR
AUDI

REPAIR
CAR
AUDI

REPAIR
CAR
AUDI

1

2
3

Return Results

<Results>
 <Result>
 ...
 </
Result>
</Results>

4

Query

Barnes &
Noble

Amazon Libri

UDDI-Registry

Figure 1: Web Service search

to determine relevant service providers (2). Once relevant services are found, the instance
properties are submitted to these service providers (3) and results are received, combined
and submitted back (4) to the first search engine.

Leveraging Web Services Infrastructure

Most existing Web Portals do not sup-

SOAP-Interface

Translation Layer

Execution/Invocation Layer

WSDL-Repository

Wrapper-Repository
UDDI-Registry

S
O

A
P

*.WSDL

WebServer

SOAP-
Interface

Application
Server

Database/CMS

www.cs.uni-sb.de

points to

points to

WebServer
Application

Server

Database/CMS

WebServer
Application

Server

Database/CMS

Citeseer

http get/pos

Service
Mediator

Amazon

Service Search Engine

http get/post

SOAP

SEARCH
Engine X

(XXL)

Query

Figure 2: Service Mediator at runtime

port Web Services, but they provide
HTML form based access to an inter-
nal search engine. One way to inte-
grate such servers is the generation of
wrappers, which are hosted by a ded-
icated server application. Such an ap-
plication, called Service Mediator, is
responsible for the generation and in-
vocation of wrapped services. If a
client application gets a reference to
a Web Service, hosted by the Service
Mediator, it retrieves the correspond-
ing WSDL description and generates
an appropriate SOAP Message to in-
voke the service. The translation layer
of the service mediator interprets the
SOAP message, activates the corre-
sponding wrapper classes and invokes
the necessary methods to communi-
cate via HTTP/HTML with the wrapped portal site to invoke the internal search engine of

the portal.

Figure 2 depicts a scenario with three

SOAP-Interface

Translation Layer

Execution/Invocation Layer

WSDL-Repository

Wrapper-Repository UDDI-Registry

WebServer
Application

Server

Database/CMS

Service
Mediator

Amazon

 <?xml ...?>
 <Envelope xmlns="http://schemas....">
 <Body>
 <generate_wrapper >
 <name>CNN</name>
 <URL>http://www.cnn.com</URL>
 <Keywords>... </Keywords>
 ...
 </Body>
 </Envelope>

register

33

g
en

e
ra

te

2

generate2

Amazon.WSDL

Amazon.class

Parse

1

Figure 3: Service Mediator at generation time

portals. The two portals on the left
do not support Web Services directly.
Access via Web Services is provided
by the Service Mediator. The por-
tal on the right (Citeseer) is fully ser-
vice enabled 1. Therefore the Service
Mediator is not needed to access its
data. The generation of a wrapper
for a specific Web site is initiated by
a special SOAP message (Figure 3).
This message contains the target por-
tal’s URL and additional information
needed later for registration. In this
generating mode, the system tries to
parse the target Web site(1) and to
detect form fields. Labels and inter-
nal names of the form fields are used
as parameter names for the WSDL
description. In many cases it might
be possible to automatically generate
a wrapper class for this site, but in
complicated cases, especially if the
target site uses script technologies man-
ual interaction is probably indispens-
able. Furthermore the transformation of the result pages to XML can hardly be done
automatically. For this purpose some frameworks have been developed, e.g. the W4F
Toolkit[SA99], using a proprietary extraction and transformation language and the Andes
Toolkit[Myl01] using XML Technologies, especially XSLT. After the generation of the
wrapper classes and the corresponding WSDL description (2), the wrapped service is reg-
istered with a (UDDI-) registry (3) (This has not necessarily to be a UDDI Registry). The
keywords and categories for the registration are submitted by the application, which initi-
ated the wrapper generation. That means that this application has to do a preprocessing of
the portal to extract meaningful keywords for categorization.

2.2 “Semantic Web” meets “Deep Web”

We want to enhance this architecture by the integration of “Semantic Web” technologies
that are already in use in different application areas [FBDK02]. This means precisely that
we integrate metadata especially ontologies into query formulation as well as query pro-
cessing. The aspect of ontology based query formulation is addressed in the next section.
From the architecture point of view we treat ontology sources like any other data source,

1Currently Citeseer does not offer such an interface. This is a fictitous example.

that we integrate with a Web Service interface. Currently we are implementing an on-
tology server which provides unified access to WordNet [Fel98], OpenCyc [OC02] and
DAML+OIL [DAML02]. The returned results also contain scores to express the similar-
ity of the returned descriptions to the original concept. These scores are needed for the
computation of the overall similarity score of the returned values. The ontologies are con-
nected to the server via a specific adapter which has to be implemented for every native
ontology API.

2.3 Integration of Heterogeneous Data Sources

Due to the fact, that many information sources do not provide any metadata, we have to
analyze the data and infer metadata to apply our ontologies to these data sources. One
example for the generation of such metadata is the matching of concepts and attributes of
an ontology to text fragments in a semistructured text document, e.g. the identification of
book descriptions in an HTML page. In general automatic analysis is error prone. So we
can not be sure about the correctness of our generated metadata. Even if the information
source provides metadata, this often does not match the metadata our query was based on,
e.g. one concept in the ontology, we used to pose our query does not match any concept of
the ontology of the data source, but there may be many similar concepts. In consequence
we have to deal with uncertainty and similarity, where results are ranked according to
their “quality”. To compute these values and subsequent to determine the best matches for
the whole query, we have to build “virtual relations” which are views on our data objects,
containing only the attributes stated in the query together with the corresponding similarity
values. On the other hand if a data source is already metadata enabled, like the RDF+OIL
enabled portal presented in [VDGA00], which also includes an interface for the RDF query
language (RQL), the system can be integrated more easily. In the example shown below
we have to compute a join between a HTML page and XML data.

Suppose the join attribute is a person

XML-Data
Amazon.com

Book catalog

Web-Service
Citeseer
getCitationInfo
 (author)

HTML-File
www.cs.
uni-sb.de

name extracted from the Web page,
which we want to connect to an au-
thor of a book contained in our XML
book data. Furthermore we want to
obtain citations of this author using
a Web Service method provided by
Citeseer. Other conceivable applica-
tions arise in corporate networks, where diverse information is distributed over relatively
unstructured information sources e.g. folders containing spreadsheets, Word documents
or Personal Information Manangement (PIM) applications. In this case the wrapper has
to implement a whole subsystem to provide efficient access to these documents. In these
cases on-demand retrieval is also crucial, because the freshness of the gathered information
can be economically and legally important.

In conclusion we have to deal with the following dimensions of heterogeneity.

• Structure: We have to deal with unstructured data (plain text), semi structured data
(like XML) and structured data (Database relations)

• Metadata: Data sources can contain no metadata, simple metadata (Dublin core
metadata in HTML pages) and complex meta data (ontologies, RDF/S).

• Ranking: Some data sources return a list of unordered results. Other sources rank
the results relatively or even with an absolute score representing their quality in
respect to the query.

• Query capabilities: A data source does not have to provide any query capability at
all (collection of text documents on a file system), but may provide a keyword based
search or even an interface for a complex query language (SQL or XQuery).

To overcome the problem of structural similarity at

UDDI-Registry

Search Engine

Service
Mediator

Portal X
(Web Service

enabled)
Portal Y Portal Z

Ontology
Server

XML
Filter

Figure 4: Architecture Overview

least partly we are implementing a framework to
convert different data formats to XML as an inter-
mediate format. The XML Filter module of this
framework not only converts HTML to XML, but
also performs some preprocessing to support fur-
ther steps. One of the aims of this HTML prepro-
cessing is to make the hidden semantics in HTML
documents more explicit, e.g. to convert the con-
tent of headings to XML Tags or extract the row
and column labels of a HTML table. In Figure 4 all
relevant components are shown.

3 Prototype Implementation

We have implemented an initial prototype system and are in the process of extending
its scope and capabilities. Currently the system automatically analyzes Web pages with
HTML forms and generates the corresponding WSDL descriptions and wrapper classes
for all forms on this page. The system is implemented in Java and can be invoked us-
ing a Web front-end via a Java servlet. The UDDI Registry we use is developed by HP
[HP02]. For generation of the WSDL Description we use the UDDI4J package and the
WSDL4J Package from IBM [IBM02]. For test purposes we have implemented another
Servlet, which transform the WSDL form Description back into a HTML form via XSLT.
The HTML frontend of the system allows as well the initiation of the generation, the reg-
istration at the registry with keywords, and the deletion of the Web Service as the search
and invocation. Figure 5 shows a source HTML form (a), a fragment of the generated
WSDL description (b) and the form rebuilt via XSLT (c). To get the rebuilt form, first
the Web Service has to be retrieved from the UDDI Registry via the corresponding call.
Next the WSDL description is transformed back by an XSLT script into a HTML form,
similar to the original form. When this form is submitted the form data is sent back to the
servlet, which parses the submitted data, builds the correct SOAP function call according

Figure 5: (a) Source Html form, (b) Generated WSDL file, (c) Rebuilt HTML form

to the WSDL description and invokes the corresponding Web Service. The wrapper then
tries to send the function arguments to the HTML form in the correct format and returns
the result URL to the Web Service caller. For forms using the HTTP POST Method the
result is cached in a local directory and this URL is returned to the caller. The test client
now simply displays the result URL. This is a very comfortable way to test the generated
WSDL descriptions. Of course the search engine invokes the Web Service directly. The
parser for the Web pages uses some simple heuristics to extract identifiers for form fields.
Of course these can not cover every kind of HTML coding, but work fairly good on most
forms. Nevertheless we are considering the use of more advanced machine learning tech-
niques for this purpose (see, e.g., [BDS01]). This wrapper framework allows us to add
new data sources almost automatically.

4 Towards Federated Search Based on Web Services and Ontologies

As a consequence of our intention to integrate many information sources with different
query capabilities and data formats, we have to consider this different quality of data. A
data source which provides XML files and corresponding XML schemas or RDF descrip-
tions is easier to interpret than uncommented HTML pages, which have to be parsed and
heuristically analyzed. So we have two main dimensions of uncertainty. The first is the
confidence of the system to have recognized attributes in the data object correctly. For
example if we want to extract the mileage of cars from car advertisements, one value for
each returned attribute value pair represents the confidence of the system, that this text
fragment really corresponds to a the representation of mileage. [EJX01] proposed four
different facets of metadata for the computation of these values.

• Terminological relationships (synonyms, hyponyms etc.)

• Data value characteristics (the mileage of car is a number between one and one
million)

• Target specific regular expression matches (if we’re looking for the mileage of car
in an advertisement we expect the term ‘mile[s]’ or ‘km’)

• The structure and sequence of elements.

We expand the terminological metadata facet to ontological metadata because we are in-
terested in the number of recognized attributes of the assumed concept in the data object.
The other dimension of uncertainty for this attribute value pair (recognized attribute plus
value of this attribute) represents the domain dependent similarity to the value of the filter
condition of the query. Based on these similarity values we want to compute a similarity
join operation that combines uncertain information of different data sources. Queries are
posed based on one or more ontologies. The query itself is formulated in an SQL-style
query language, where relations are substituted by concepts of an ontology and schema
attributes correspond to concept attributes.

5 Conclusion

We proposed an architecture for a federated search system, which integrates existing infor-
mation sources, especially Web Portals but also other heterogeneous data sources utilizing
state-of-the-art technologies. Most other approaches pose very strict (often only implic-
itly mentioned) requirements on the data sources, whereas our approach can handle very
different data sources. From the outset, we considered different kinds of uncertainty in
our architecture. This also allows us to compute a similarity join operation, which con-
nects information from different heterogeneous data sources in a meaningful way [Fag96].
Although our approach integrates onotologies, we can include data sources without onto-
logical support directly, like Web Services in the style of simple Web accessible methods.
This flexibility mainly roots in the very loose coupling of the components that also allows
dynamic reconfiguration (e.g. addition of new data sources) of the system at runtime.

References

[BNL98] S. S. Bhowmick, W. K. Ng, E.-P. Lim: Join Processing in Web Databases. 9th Interna-
tional Conference on Database and Expert Systems Applications (DEXA’98), 1998

[CGHI94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,
J. Widom: The TSIMMIS Project: Integration of Heterogeneous Information Sources. 16th
Meeting of the Information Processing Society of Japan (IPSJ’94), 1994

[CHW91] C. Collet, M. N. Huhns, W.-M. Shen: Resource Integration Using a Large Knowledge
Base in Carnot. IEEE Computer 24(12): 55-62, 1991

[CS02] F. Casati, M.-C. Shan: Models and Languages for Describing and Discovering E-Services,
SIGMOD Conference 2001 (Tutorial), 2001

[DAML02] The Darpa Agent Markup Language, http://www.daml.org

[DMHF00] S. Decker, S. Melnik, F. v. Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann,
I. Horrocks: The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing 4(5):
63-74, 2000

[EJX01] D. W. Embley, D. Jackman, L. Xu: Multifaceted Exploitation of Metadata for Attribute
Match Discovery in Information Integration. Workshop on Information Integration on the Web
(WIIW 2001), 2001

[Fag96] R. Fagin: Combining Fuzzy Information from Multiple Systems. ACM Symposium on
Principles of Database Systems (PODS’96), 1996

[FBDK02] D. Fensel, C. Bussler, Y. Ding, V. Kartseva, M. Klein, M. Korotkiy, B. Omelayenko,
and R. Siebes: Semantic Web Application Areas. 7th International Workshop on Applications
of Natural Language to Information Systems (NLDB 2002), 2002

[HP02] HP total e-server; HP Web Services developer edition, http://www.bluestone.com/

[IBM02] UDDI4J, http://oss.software.ibm.com/developerworks/projects/uddi4j

[KS96] V. Kashyap, A. P. Sheth: Semantic and Schematic Similarities Between Database Objects:
A Context-Based Approach. VLDB Journal 5(4): 276-304, 1996

[KOSH98] D. Konopnicki, O. Shmueli: Information Gathering in the World-Wide Web: The W3QL
Query Language and the W3QS System. TODS 23(4): 369-410, 1998

[MKSI96] E. Mena, V. Kashyap, A. P. Sheth, A. Illarramendi: OBSERVER: An Approach for
Query Processing in Global Information Systems based on Interoperation across Pre-existing
Ontologies. International Conference on Cooperative Information Systems (CoopIS 96), 1996

[Myl01] J. Myllymaki: Effective Web data extraction with standard XML technologies. Interna-
tional World Wide Web Conference (WWW 2001), 2001

[OC02] OpenCyc, The Open Source version of Cyc technology, http://www.opencyc.org

[RDF00] Resource Description Framework (RDF) Model and Syntax Specification, W3C Recom-
mendation 22 February 1999, http://www.w3.org/RDF/

[SA99] A. Sahuguet, F. Azavant: Looking at the Web through XML Glasses. International Confer-
ence on Cooperative Information Systems (CoopIS 1999), 1999

[UDDI01] Universal Description, Discovery and Integration (UDDI), Specification 2.0.
http://www.uddi.org

[VDGA00] V. Christophides, D. Plexousakis, G. Karvounarakis & S. Alexaki, Declarative Lan-
guages for Querying Portal Catalogs, 1st ”DELOS”Workshop on ”Information Seeking,
Searching and Querying in Digital Libraries”, 2000.

[BDS01] V. Borkar, K. Deshmukh,S. Sarawagi: Automatic Segmentation of Text into Structured
Records. SIGMOD Conference (SIGMOD 2001), 2001

[Fel98] C. Fellbaum (Editor): WordNet: An Electronic Lexical Database, MIT Press, 1998

